

Chair for Embedded Systems

Approximate Tiny Machine Learning on Lightweight FPGAs

Georgios Mentzos, Prof. Jörg Henkel

Introduction

- Why Tiny Machine Learning ?
 - HW & SW capable of on-device, near sensor analytics

Motivation

- Requirements Imposed by EdgeAI
 - Energy Efficiency

Always-on & Battery Powered Inference

Medical Devices

- Private & Secure
- Near Instant Response & Independent from Network
- Accessible & Low Cost

- Approximate Computing
 - Trades Accuracy for Performance
 - Application Across the Computation Stack

Anomaly Detection

- Low Latency
- Acceptable Accuracy
- Approximate Computing & TinyML
 - ML tasks inherently error resilient
 - A **Perfect Match** to fit even larger DNNs on even smaller devices
 - Utilize **Flexibility** of FPGAs to fully exploit approximation benefits

Approaches for Tiny Machine Learning on FPGAs

- DNN Specific Optimizations during Training
 - Optimizing for sparsity using Pruning during
 - Explorations of variable Bit-Widths using Quantization
 - Hardware Aware DNN Compression
- Hardware Approximations
 - FPGA based approximate arithmetic components
 - LUT optimized Approximate Multipliers
 - **Approximate Adders** lacksquare
- DNN Mapping Methods to Accelerators
 - **Different Parallelization Optimization** Strategies
 - Folded & Fully Parallel Architectures

- Diverse & Heterogeneous
- Automated Frameworks
- Neural Architecture Search
 - Hardware Aware NAS for fixed hardware
 - Hardware & Software Co-Exploration

FPGA

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

