RISC-V Opt-VP: An Application Analysis Platform Using Bounded Execution Trees

Jan Zielasko^{1,2}, Rune Krauss¹, Rolf Drechsler^{1,2}

¹ Institute of Computer Science, University of Bremen, Germany

² Cyber-Physical Systems, DFKI GmbH, Germany

Jan.Zielasko@DFKI.de

1. Overview

- **Tailoring hardware** to applications significantly increases their performance.
- Virtual Prototypes (VPs) enable early software development and design space exploration
- **RISC-V Opt-VP** is a Virtual Prototype driven binary analysis platform
- By analyzing the execution, it identifies instruction sequences that are promising

Sequence Merging

candidates for hardware optimization

2. Virtual Prototype Driven Tracing

- Extend RISC-V Virtual Prototype
- Tracing module interfacing ISS core
- Construct bounded execution trees
- Lossless compression of trace information
- Identify promising hardware optimization candidates based on recurring patterns

VP Extension SC Extend VP to include new optimization E.g. via communication over SystemC bus Iterate analysis and design ASIC/FPGA Implement accelerator on FPGA Evaluate performance gain Update VP to improve analysis

and performance estimation

3. Analysis

- Analyze trees using a **scoring function**
- Choose a set of **metrics** that matches the target hardware optimization
- **E.g.** $Score(Seq) = weight_{Seq} \cdot |Instructions|$

4. VP Evaluation

• Analyze Embench and RIOT

• Over 30% expected coverage on average

	Root	Len	Weight	Total $\#$	NP
aha-m64	SRLI	11	162432	$4532 \mathrm{K}$	185.0
crc32	JAL	12	175104	$3846 \mathrm{K}$	71.5
edn	LH	5	290400	3483K	104.2
huffbench	ADDI	1	661440	$2515 \mathrm{K}$	1
matm-int	ADD	5	357200	4426K	80.7
md5sum	SLLI	24	39936	2339K	105.3
minver	SW	5	100114	$2818 \mathrm{K}$	88.8
nettle-aes	LW	31	32864	$4481 \mathrm{K}$	99.7
slre	SW	7	107007	$2570 \mathrm{K}$	204.0
RIOT	ADDI	1	3893	13K	1
Average	-	6.52	339986	30.95%	59.76

Available on GitHub:

- https://github.com/agra-uni-bremen/opt-vp
- https://github.com/agra-uni-bremen/opt-seq

Funded by:

Read the extended abstract:

Grant number 16ME0127, 01IW22002 and 01IS23074

