
ASIC Physical Implementation
Using Openlane2

Nguyen Dao
nguyen.dao@manchester.ac.uk

2

ASIC Design Flow

Specifications
PDKs
IPs

Design

Fabrication

Implementation Ve
ri
fic
at
io
n

ED
A
 t

o
o
ls

3

Opensource EDA tools and PDKs
Opensource tools
o Xschem – Analog/mixed signal design
o Yosys – RTL synthesis
o Icarus/Iverilog + GTKWave – synthesis/simulation and

waveform viewer
o Openroad – Physical implementation
o OpenSTA – Timing/Power analysis
o Magic/Klayout – Layout/DRC check
o Netgen – LVS check
o CVC – Circuit Validity checker

Opensource PDKs
o GF180MCU (GlobalFoundries 180nm)
o Sky130 – Sky90-FDSOI (Skywater 130nm – 90nm)
o FreePDK45 (45nm) - FreePDK15 (15nm)
o ASAP7 (Predictive 7nm Process)
o FreePDK3 (Predictive 3nm Process)

o https://xschem.sourceforge.io/stefan/xschem_man/
xschem_man.html

o https://github.com/YosysHQ/yosys
o http://iverilog.icarus.com
o https://gtkwave.sourceforge.net
o https://github.com/The-OpenROAD-

Project/OpenLane
o http://opencircuitdesign.com/magic/
o https://www.klayout.de
o https://github.com/hpretl/iic-osic-tools

o https://skywater-pdk.readthedocs.io/en/main/
o https://opensource.googleblog.com/2022/07
o https://eda.ncsu.edu/
o https://asap.asu.edu

https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
http://opencircuitdesign.com/magic/
https://www.klayout.de/
https://github.com/hpretl/iic-osic-tools
https://skywater-pdk.readthedocs.io/en/main/
https://opensource.googleblog.com/2022/07
https://eda.ncsu.edu/
https://asap.asu.edu/

4

eFabless Caravel SoC
o Caravel SoC is composed of the harness frame, the

management area and the user project area
o The management SoC is a RISC-V based SoC that includes

several peripherals such as UART, GPIOs etc.
o The management SoC runs firmware that can be used to

configure the IOs, control the power supply and observe/control
signals to/from User project wrapper

o User project area (2.92mm x 3.52 mm) has fixed 38 GPIOs,
128 Logic analyzer probes and Wishbone port connections to
management SoC

5

Openlane2 Design Flow
1. Synthesis

o Yosys & Verilator – RTL synthesis
o ABC – technology mapping
o OpenSTA – static timing analysis

2. Floorplan and PDN
o Init_fp – core area planning
o Ioplacer – macros/Ios placement
o Pdn – implement power distribution network
o Tapcell – insert welltap/decap cells

3. Placement
o RePlace – perform global placement
o Resizer – optimize the design
o OpenDP – perform detailed placements

4. CTS
o TritionCTS – Clock Tree Synthesis

5. Routing
o FastRout/CU-GR – perform global routing
o TritonRoute – perform detailed routing
o SPEF-Extractor - perform parasitic extraction

6. GDSII Generation
o Magic/Klayout – stream out the final GDSII layout file

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

6

Openlane2 Design Flow
Hardening strategies:
1. Maro-First Hardening: Harden the user macro(s) initially and

incorporate them into the user project wrapper without top-level
standard cells. Ideal for a smaller designs, as this approach
significantly reduces Placement and Routing (OnR) and signoff time.

2. Full-Wrapper Flattening: Merge the user macro(s) with the
user_project_wrapper, covering the entire wrapper area. While this
method demands more time and iterations for PnR and signoff, it
ultimately enhances performance, making it suitable for design
requiring the full wrapper area.

3. Top-Level Integration: Place the user macro(s) within the wrapper
alongside standard cells at the top level, This method is typically
chosen to introduce buffering at the top level, fitting scenarios where
such an approach is necessary

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

7

Openlane2 Design Flow

Hardening strategies:
1. Prepare the design (RTL)
2. Set the flow constraints .json, timing constraints .sdc, pin
placement .cfg
3. Run the flow

$openlane <dir_to_json_file>/config.json
4. Check the results

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

config.json

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

8

Openlane2 Design Flow

Hardening strategies:
1. Prepare the design (RTL)
2. Set the flow constraints .json, timing constraints .sdc, pin
placement .cfg
3. Run the flow

$openlane <dir_to_json_file>/config.json
4. Check the results

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

9

Openlane2 Design Flow

check the final layout gds with Klayout:
$openlane --last-run --flow openinklayout openlane/examples/spm/config.json

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

10

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Macro integration using power ringMacro integration using power straps

Macro integration:
• Hierarchical method: saves space, but less routing layers

available for the macros
• Ring method: Uses more space, allow any arbitrarily-nested

macro to use the full routing layer stack. Useful if routing very
complex macros.

All macros should be hardened with the following options:
• FP_PDN_CORE_RING
• FP_PDN_HORIZONTAL_LAYER
• FP_PDN_CORE_HWIDTH
• FP_PDN_CORE_VWIDTH
• FP_PDN_CORE_HOFFSET
• FP_PDN_CORE_VOFFSET
• FP_PDN_CORE_HSPACING
• FP_PDN_CORE_VSPACING

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

11

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Static Timing Analysis (STA): the STA tool identified the
design timing paths and then calculates the data’s earliest and
largest actual and required arrival times at every timing path
endpoint.

If the data arrives after (setup checking) or before (hold checking)
it is required, we have a timing violation (negative slack)

STA makes sure that a circuit will correctly perform its function
(but tells nothing about the correctness of that function)

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

12

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Corner data stored in TECH_LEFS and RCX_TULESETS

PVT: corner data stored in LIB

Timing corner: to ensure a chip can work properly under
various conditions, the design must be analysed in different
timing corners.
• Parasitic/Interconnect corners (capacitance, resistance)
• Transistor corners (fast, typical, slow)
• Temperature
• Voltage

Common EDA files incorporate these corners:
.spef – Parasitic/interconnect corners
.spice – interconnect and transistor corners
.lib – characteristics of a cell/macro at a full corner

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

13

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Timing closure:

Timing constraints need to be set to help the tool analyse and optimize the
design. The timing constraints are defined in SDC file (.sdc) such as
create_clock, set_input_delay, set_output_delay, set_load, set_drive, etc.

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

14

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Design Rule Check (DRC):
The design layout has to be checked against rules set by chip
foundries to ensure that it can be manufacturable.

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

15

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Subcircuit summary:
Circuit 1: pm32	Circuit 2: pm32
sky130_fd_sc_hd__tapvpwrvgnd_1 (102->1) |sky130_fd_sc_hd__tapvpwrvgnd_1 (102->1)
sky130_fd_sc_hd__decap_3 (144->1) |sky130_fd_sc_hd__decap_3 (144->1)
sky130_fd_sc_hd__inv_2 (64) |sky130_fd_sc_hd__inv_2 (64)
sky130_fd_sc_hd__nand2_1 (31) |sky130_fd_sc_hd__nand2_1 (31)
sky130_fd_sc_hd__dfrtp_1 (64) |sky130_fd_sc_hd__dfrtp_1 (64)
sky130_ef_sc_hd__decap_12 (132->1) |sky130_ef_sc_hd__decap_12 (132->1)

Layout Versus Schematic (LVS):
It compares the layout GDSII or DEF/LEF, with the schematic to
ensure the connectivity in both views matches.

Some common LVS errors such as:
• Short: Two or more wires that should not be connected have

been and must be separated. The most problematic is power
and ground shorts.

• Open: Wires or components that should be connected are left
dangling or only partially connected.

• Missing components: An expected components has been left out
of the layouts. Normally some parasitic/dummy components
need to be added to match with the layout

Netgen.LVS is the Step run for LVS using a tool called Netgen. First
the layout is converted to SPICE netlist, Next, the layout and the
schematic are inputted to Netgen

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

16

Openlane2 Design Flow

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

Antenna Check:
Long metal wire segments that are connected to a transistor gate may
damage the transistor’s thin gate oxide during the fabrication process
due to its collection of charges from the processing environment

Chip foundries normally supply antenna rules, which set the limit of the
ratio of collection area and drainage (thin oxide) area.

Antenna effect can be avoided by instructing the router to use short wire
segments and to create bridges to disconnect long from transistor gates
during fabrication (this is not supported by Openlane flow)

Openlane uses another approach that involves the insertion of an
antenna diode (provided as a standard cell) next to the cell input pin that
suffers from the antenna effect.

https://openlane2.readthedocs.io/en/latest/getting_started/newcomers/index.html

17

eFPGA design flow using Openlane

1. Create/Generate RTLs
2. Customize the cells (optional)
3. Hardening tiles (optional)
4. Hardening the fabric (eFPGA_top)/User project wrapper
5. Caravel Integration

18

eFPGA design flow using Openlane
1. Generate the fabrics (RTLs)

More details at
https://fabulous.readthedocs.io/en/latest/Building%20fabric.html

https://fabulous.readthedocs.io/en/latest/Building%20fabric.html

19

eFPGA design flow using Openlane
2. Customize the cells (optional)

2.1. Create schematic
2.2. Simulation
2.3. Layout
2.4. Extract and do post-layout simulation
2.5. Export LEF/lib/GDS

VERSION 5.7 ;
NOWIREEXTENSIONATPIN ON ;
DIVIDERCHAR "/" ;
BUSBITCHARS "[]" ;

MACRO cus_tg_mux41_buf
CLASS CORE ;
FOREIGN cus_tg_mux41_buf ;
ORIGIN 0.000 0.000 ;
SIZE 6.440 BY 2.720 ;
SYMMETRY X Y R90 ;
SITE unithd ;
PIN S0

ANTENNAGATEAREA 0.216000 ;
DIRECTION INPUT ;
USE SIGNAL ;
PORT

LAYER met2 ;
RECT 1.980 1.310 2.300 1.570 ;
RECT 2.035 0.800 2.245 1.310 ;
RECT 1.995 0.480 2.255 0.800 ;

END
PORT

LAYER met1 ;
RECT 0.145 1.550 0.375 1.700 ;
RECT 1.980 1.550 2.300 1.570 ;
RECT 0.145 1.410 2.300 1.550 ;
RECT 1.980 1.310 2.300 1.410 ;

LAYER via ;
RECT 2.010 1.310 2.270 1.570 ;

END
END S0

…
END

END cus_tg_mux41_buf

library ("custom_mux") {
define(def_sim_opt,library,string);
…
time_unit : "1ns";
voltage_unit : "1V";
leakage_power_unit : "1nW";
current_unit : "1mA";
pulling_resistance_unit : "1kohm";
capacitive_load_unit(1.0000000000, "pf"); …
default_arc_mode : "worst_edges";
default_constraint_arc_mode : "worst";
default_leakage_power_density : 0.0000000000;
default_operating_conditions : "tt_025C_1v80";
operating_conditions ("tt_025C_1v80") {

voltage : 1.8000000000;
process : 1.0000000000;
temperature : 25.000000000;
tree_type : "balanced_tree";

}
power_lut_template ("power_inputs_1") {

variable_1 : "input_transition_time";
index_1("1, 2, 3, 4, 5, 6, 7");

cell ("cus_tg_mux41_buf") {
leakage_power () {

value : 0.0137458000;
when : "!A0&!A1&!A2&!A3&!S0&S1";

}
related_pin : "S1";
rise_transition ("del_1_7_7") {

…
timing_sense : "negative_unate";
timing_type : "combinational";

}
}

20

eFPGA design flow using Openlane
3. Hardening tiles (optional)

• Configure the flow and design constraints (config.tcl)
• Initial/Set Technology/Lib and Top design
• Set area/density
• Set clock constraints
• Set technology/custom gates mapping
• Set IO pins arrangement
• Set Timing constraints (disable timing loops)
• Set routing constraints (layers/halos)

21

eFPGA design flow using Openlane
3. Hardening tiles - Notes

• Need to add the lib/lef of the custom cells to the sky130 tech files
• Enable latch mapping – need to specify the latch used for configurations

and specify the custom cells be used (gate_map.v)
• Enable hierarchical synthesis (SYNTH_NO_FLAT=1) to resist changing

the module name during yosys synthesis
• Set Mux4 as preferable for better density (Yosys uses Mux2 as the

default)
• RTL syntax, limited support for SystemVerilog e.g., global

param/inherited param (#)
• Disable combinational loops by replacing the default base.sdc
• IO pins placement is limited (e.g., single metal layer only)
• Clock tree synthesis is limited (cannot handle a very large number of

connections)

sky130_fd_sc_hd__clkbuf_16

UserCLK

UserCLKo

LUT4AB

sky130_fd_sc_hd__clkbuf_16

UserCLK

UserCLKo

RegFile

sky130_fd_sc_hd__clkbuf_16

UserCLK

UserCLKo

RegFile

sky130_fd_sc_hd__clkbuf_16

UserCLK

UserCLKo

LUT4AB

sky130_fd_sc_hd__clkbuf_16

UserCLKo

UserCLKo

S_term
UserCLK

UserCLKo

S_term
UserCLK

UserCLKo

S_term
UserCLK

UserCLK

DSP

https://github.com/nguyendao-uom/open_eFPGA

https://github.com/nguyendao-uom/open_eFPGA

22

eFPGA design flow using Openlane
4. Hardening the User project (eFPGA_top fabric)

• Instantiate and connect the fabric (eFPGA_top) in
User_project_wrapper.v

• Floorplan and Placement constraints
• Configure the Openlane flow and the design constraints
• Hardening the User_project_wrapper
(Note: the power rails can be unconnected to some tiles/macros if
they are not in the range of PDN pitch)

23

eFPGA design flow using Openlane
5. Caravel Integration
6. Run local precheck
7. Submit precheck/tapeout job on eFabless portal

>>> DONE !!!

https://platform.efabless.com/shuttles/MPW-7?active_tab=summary

24

Questions?

https://join.slack.com/t/open-source-silicon/shared_invite/zt-1hb6gydjo-C2NCyrjGtkAwWcaaRTSbNQ

https://join.slack.com/t/open-source-silicon/shared_invite/zt-1hb6gydjo-C2NCyrjGtkAwWcaaRTSbNQ

