
Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Boosting the efficiency of RISC-V cores:
Fine-grain multi-threading and custom instructions, from concepts to

implementation

Riadh Ben Abdelhamid1

1Postdoctoral researcher at the Novel Computing Technologies group, Heidelberg University, Germany

FPGA Ignite Summer School 2024

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 1 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 2 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 3 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Lecture outline

What I will teach
Issues facing the efficiency of FPGA softcores.
Fine-grain multi-threading and how it improves the efficiency of FPGA softcores.
Adding custom instructions to riscv-gnu-toolchain and how they can improve the
efficiency of the processor.
Adding support for custom instructions at the RTL level.

What you will learn
Well, That is up to you :)

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 4 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

RISC-V processors

Benefits of using RISC-V

Linux of hardware (Open Source ISA (Instruction Set Architecture)).

Rich and growing ecosystem and user base.

Modular ISA with the possibility of using own custom instructions.

RISC-V on FPGAs

Mapping on FPGAs is tricky.

Conventional Micro-architectures are under performing.

Possible Solutions

Barrel Processor architecture may yield high compute density.

Context storage can be handled by on-chip memories.

Simpler Deeper Pipeline ⇒ Higher throughput with less logic.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 5 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Efficiency of RISC-V softcores?

What can we improve?
Multiple aspects :

Speed clock speed, throughput, peak performance, sustained performance.
Area LUTs, BRAMs, etc. ⇒ compute density.
Power Power-efficiency.

How can we improve?
Architecture (ISA, memory Architecture, etc.).
Micro-architecture (Efficient ISA implementation, Efficient mapping to target
hardware, deep pipelining, etc.).
Tools (Efficiently using tools like Vivado, Quartus, etc.)

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 6 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 7 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Challenges of Deep Pipelining on FPGAs

To achieve a high FMAX, a softcore processor requires a deep pipeline.
Deep pipelining is a technique used to improve throughput by breaking down instruction execution into
smaller stages.

However deep pipelining faces some challenges on FPGAs :

Branch Prediction Penalty

Deep pipelines suffer from branch prediction penalties, where pipeline stages are flushed when
branches are mispredicted.

FPGAs have limited resources to spend on complex branch prediction structures, making efficient
prediction challenging.

Increased Forwarding Logic

Deep pipelines require extensive forwarding logic to propagate data between pipeline stages. =⇒ increases
resource utilization and limits scalability on FPGAs.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 8 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Branch Prediction Penalty and Impact on CPI

To formulate the penalty cost of a branch misprediction in terms of cycles per instruction (CPI), we need to
consider the additional cycles incurred due to the misprediction.

CPI cost

The penalty cost can be expressed as :

CPIoverall = CPIcorrect + P(misprediction)× Pm (1)

For example, for the case where CPIcorrect=1, where the probability of misprediction is P(misprediction)=0.2 (20%
misprediction rate) and where the misprediction penalty is Pm=5 wasted cycles. The resulting CPIoverall would
evaluate to :

CPIoverall = 1 + 0.2 × 5 = 1 + 1 = 2. (2)

This means that, on average, it takes 2 clock cycles to execute each instruction, considering both correctly
predicted branches and the penalty for mispredictions, which translates to a 100% loss in performance.

Important Note

The higher the misprediction rate P(misprediction) and/or the Penalty Pm, the greater the impact on the overall
CPI, indicating decreased performance due to branch mispredictions.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 9 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Data Forwarding (Register Bypassing)

Read After Write (RAW) Hazard (Data Hazard)

This occurs when an instruction needs to read a register that a previous instruction is writing to, and the read
would otherwise happen before the write completes. Without bypassing, the pipeline would need to stall until the
write completes, as the needed data would not yet be available.

Instruction 1 : ADD x3, x1, x2 ; =⇒ x3 = x1 + x2
Instruction 2 : SUB x4, x3, x5 ; =⇒ x4 = x3 - x5

In this example, Instruction 2 needs the result of Instruction 1 for the SUB operation. If the processor waits until
Instruction 1 writes the result to the register file before allowing Instruction 2 to proceed, this would create a
pipeline stall.

Solution with Register Bypassing

Register bypassing allows the result from Instruction 1 (which will be available at the end of the execute
stage) to be forwarded directly to the input of the execute stage of Instruction 2, without waiting for the result
to be written back to the register file.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 10 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Why Register Bypassing is good?

Why Register Bypassing is good
Addresses RAW hazards by reducing or eliminating stalls in the pipeline.
Solves RAW hazards by providing an immediate path for data from the output of one
instruction to the input of the next.
Bypassing improves performance by allowing subsequent instructions to use the
results of earlier instructions as soon as they are computed.
Helps maintaining high instruction throughput and efficient pipeline utilization.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 11 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Why Register Bypassing is not good?

Why Register Bypassing is not good
Data forwarding requires additional hardware in the processor design. Specifically :

Multiplexers : These are used to select the correct data source (either from a register
or from an earlier pipeline stage) for each operand of an instruction.
Control Logic : Extra control logic is needed to detect when data forwarding should
occur and to control the multiplexers accordingly.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 12 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Barrel Processing (Fine-grain multi-threading)

Figure – Interleaving 16 harts in the BRISKI barrel processor.NOTE

NHardware Threads ≥ Nphysical pipeline stages.

A new Hart is fetched each clock cycle.

A Hart is executed once every 16 cycles.

By the time the same Hart is fetched again, all branches and data hazards are resolved =⇒ No need for branch prediction
or Register forwarding =⇒ Better MIPS/LUT and higher number of cores is possible

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 13 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Barrel processor (Fine-Grain Multi-Threading) Advantage

To increase instruction throughput, you must aim for :

low CPI (≤ 1)

high maximum clock speed FMAX

Achieving a perfect branch prediction rate nearing 100% contributes to a better CPI.
Additionally, to attain high FMAX, the processor requires a deep pipeline, which typically necessitates register
forwarding despite potentially constraining FMAX.

Here, the barrel processor comes into play. Interleaving hardware threads every clock cycle :

eliminates the need for branch prediction

eliminates the need for register forwarding

This effectively allows

deeper pipeline without paying increased branch and forwarding costs.

Higher clock speed while maintaining low CPI

By removing the need for branch prediction and register forwarding, a barrel processor saves logic and results in
a more compact implementation =⇒ Higher compute density (MIPS/LUT).

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 14 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

IPS as a performance metric

Instruction Per Second (IPS)

The CPI metric is agnostic to the operating clock speed of a processor.

The actual processor performance (Instruction throughput) can be measured by Equation (3), where
Instruction Per Second (IPS) is the actual instruction throughput, Instruction Per Cycle (IPC) is the
inverse of CPI (IPC = 1/CPI) and FMAX is the maximum operating clock speed of the processor.

IPS = IPC × FMAX (3)

Important Note

There will be no need for register forwarding nor branch prediction, as the pipeline goes deeper, because when
a hart (hardware thread) is re-enabled again, all data hazards and all branches would be already resolved.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 15 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 16 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Design of BRISKI (Barrel RISC-V for Kilo-core Implementations)
EXECUTE MEMORY WRITE-BACKDECODEFETCH

slt

WB
MUX

ALU
OP2
MUX

branch
MUX

OP1
MUX

PC
MUX is

br
an
ch

isjump

4

Figure – BRISKI Barrel Processor Architecture.

NOTE

16 RegisterFiles/ProgramCounters for 16 Hardware Threads.

Fewer than 800 LUTs and fewer than 1K FFs (near 1-to-1 ratio).

650+ MHz (elastic pipeline) =⇒ 650 MIPS (CPI=1) =⇒ ~0.82 MIPS/LUT
Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 17 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

FPGA Resource Layout and the Need for elasticity pipeline

Figure – 12 Columns containing BlockRAM resources (180
BRAMs/Col for a total of 2160 BRAM (2160
RAMB36 or 4320 RAMB18)).

Figure – 4 Columns containing UltraRAM resources (240
URAMs/Col for a total of 960 UltraRAMs).

Figure – 19 Columns containing DSP resources (360 DSPs/-
Col for a total of 6840 DSPs). Figure – Columns containing PCIe resources

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 18 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Design of BRISKI (Barrel RISC-V for Kilo-core Implementations)

NOTE

One BRAM for Data / Instructions.

One BRAM for 16 register files.

Memory Mapped Interface to translate between
load/store and control signals.

CoreTop wrapper

BRISKI core

re
ad
_m

em
_s
el

U
R
AM

_e
n

Memory Map
Decoder

MMIO_en

MMIO_rd_data

i_
em

pt
y

o_
lo
ck
ed

o_
re
q

Memory
Mapped
Interface

data_en

BRAM_rd_data

BRAM
(DATA)

Memory
source Mux

R
O
M
_a
dd
r

R
O
M
_i
ns
tr

B
R

A
M

(In
st

ru
ct

io
ns

)

R
Vc
or
e_
w
re
n

R
Vc
or
e_
da
ta

RVcore_addr

Activation
Mux

ZERO

i_
gr
an
t

Activation
Mux

Activation
Mux

Activation
Mux

Figure – BRISKI CoreTop Interface wrapper.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 19 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Design of BRISKI (Barrel RISC-V for Kilo-core Implementations)

RegisterFile
(16 Threads)

ReadData[31:0]

ReadAddr[8:0]

WriteData[31:0]

WriteAddr[8:0]

WriteEnable

DATA0[31:0]
DATA1[31:0]

DATA31[31:0]

RegisterFile 2

RegisterFile 16

ReadData[31:0]

ReadAddr[8:0]

WriteData[31:0]

WriteAddr[8:0]

WriteEnable

DATA0[31:0]
DATA1[31:0]

DATA31[31:0]

RegisterFile 2

RegisterFile 16

RegFile Write Addr ThreadIndex[3:0] (fromWB Stage) WriteAddr[4:0]

WriteEnable

RegFile WriteData WriteData[31:0]

ThreadIndex[3:0] (from DEC Stage)
RegFile

ReadAddr1

ReadAddr1[4:0]
RegFile

ReadAddr2 ThreadIndex[3:0] (from DEC Stage) ReadAddr2[4:0]

ReadData1[31:0] ReadData2[31:0]

Figure – Register File implementation using two RAMB18 primitives.

NOTE

16 register files (2 RAMB18 in SDP mode).
RAMB18 instances with 512 by 32-bit space fully utilized.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 20 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Compute density

Why Compute density matters

Compute density : Million of Instruction Per Second Per LUT (MIPS/LUT) ratio

The short sight goal is to increase MIPS and reduce LUTs =⇒ Improve Local compute density.

The long sight goal is to be able to flood a single FPGA with hundreds of cores without compromising MIPS.
=⇒ Improve Global compute density.

The end result would deliver 100s of GIPS on a single FPGA chip.

(MIPS/LUT)FPGA = (MIPS/LUT)CORE ×#CORES (4)

In simpler terms, increasing Compute density means : More LUTs =⇒ Increasingly More MIPS.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 21 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

State of the art softcore implementations :

[1] S. Mashimo, A. Fujita, R. Matsuo, S. Akaki, A. Fukuda, T. Koizumi, J. Kadomoto, H. Irie, M. Goshima, K. Inoue, and R. Shioya, “An open source
fpga-optimized out-of-order risc-v soft processor,” in 2019 International Conference on Field-Programmable Technology (ICFPT), 2019, pp. 63–71
[2] O. Kindgren. bit-serial risc-v. [Online] https ://github.com/ olofk/serv
[3] J. Gray. (2017) GRVI Phalanx : A Massively Parallel RISC- V FPGA Accelerator Framework A 1680-core, 26 MB Parallel Processor Overlay for
Xilinx UltraScale+ VU9P. [Online] : https ://carrv.github.io/2017/papers/gray-phalanx-carrv2017.pdf
[4] https ://github.com/riadhbenabdelhamid/BRISKI

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 22 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

BRISKI enables single-FPGA Kilo Core designs

BRISKI* Barrel Processor Core

BRISKI implements full RV32I user mode + atomic extension subset (LR.W/SC.W) + CSRRS).
650+ MHz on a VU9P FPGA.
Fewer than 800 LUTs in most implementations (Fewer than 700 LUTs with area optimized directive on a VU9P).
Current implementation interleaves 16 Hardware Threads.
> 0.8 MIPS/LUT

[*] https ://github.com/riadhbenabdelhamid/BRISKI.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 23 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

SPARKLE (Scalable Parallel Architecture for RISC-V Kernel-Level Execution)

Figure – SPARKLE floorplan on a VU9P FPGA.
Figure – SPARKLE’s Fully placed and routed design, on a VU9P FPGA, with

1,024 BRISKI cores (16,384 Hardware Threads) @400 MHz.

SPARKLE** : 1,024 BRISKI cores @ 400 MHz on a VU9P

SPARKLE is a scalable many-core architecture (scales up and down).

Currently running on a VU9P with 1,024 BRISKI cores @400MHz and delivering 400 RV32I GIPS.

This implementation uses around 800K LUTs, 2085 BRAMs, 60 URAMs and 1,150K FFs.

> 0.5 MIPS/LUT

[**] Riadh Ben Abdelhamid,Vladislav Valek, and Dirk Koch. SPARKLE : A 1024-Core/16,384-Thread single FPGA many-core RISC-V barrel

processor Overlay. ASAP 2024.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 24 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 25 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

PreLab preparation

(Optional) A recommended read

This is a nice guide to add custom instructions, however some of the contents are outdated :
https ://pcotret.gitlab.io/riscv-custom/sw_toolchain.html

Set Up the Tools

The provided Virtual Machine comes with verilator and riscv-gnu-toolchain pre-installed.

If you do not prefer to use or can not use the VM, make sure to have these tools downloaded and installed.

Clone the BRISKI core repo and switch to FPGAIgnite24 branch

git clone https ://github.com/riadhbenabdelhamid/BRISKI.git
cd BRISKI

git switch FPGAIgnite24

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 26 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

BRISKI Repo structure

hardware

BRISKI

software

simul Assembly

verilator

simulation_model

BRISKI_simulator.cpp

RISCV_core_tb.cpp
Makefile

./runs/*.asm

Makefile

rtl_memory.txt

./runs/*.inst

memory.txt

Figure – Structure of the BRISKI github repo.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 27 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Convert lower cases to upper cases with fine-grain multi-threading

Open the file ../BRISKI/software/assembly/lower_upper_byte.s

Listing – Data section

1 .section .data
2 .align 4
3 # Data sections for each hart, each containing an array of 32 ASCII characters
4 hart0_data: .ascii "AbcDefGhijKlmNop@#%$&*!()_-+=012"
5 hart1_data: .ascii "zXyWVutsrQpOnMLkjihgfEDCBA987654"
6 hart2_data: .ascii "PqRsTuvWXYzabcdefghij!@#$%^&*()_"
7 hart3_data: .ascii "lmnOpQrStUvWxYzABCDEFGHIJ{}|;:<>"
8 hart4_data: .ascii "KLMNoPQrStUVWXyz0123456789~`-=_+"
9 hart5_data: .ascii "abcdefghijKLMNOPQR2345678901*&^%"

10 hart6_data: .ascii "1234567890abcdefGHIJKLMnoPQRSTuv"
11 hart7_data: .ascii "yzABCDEFghijKLMNOpqrst0123456789"
12 hart8_data: .ascii "ghijKLMNOPQRSTuvwxyZ!@#$%^&*()12"
13 hart9_data: .ascii "ABCDefghijklmnopQRSTuvWXYZ012345"
14 hart10_data: .ascii "mnopQRSTUVWXyzab@#%$&*!()_-+=012"
15 hart11_data: .ascii "xyz1234567890ABCD%$&*(!)_+=-{}|["
16 hart12_data: .ascii "wxyZABCDEfghijklmnopQRSTuvWXYZ12"
17 hart13_data: .ascii "abcdefghijklmNOPQRSTUVWXyz012345"
18 hart14_data: .ascii "PQRSTuvWXYzabcdefghijklmnop!@#$%"
19 hart15_data: .ascii "1234567890ABCDXYZefghijklmnopQRS"
20
21 .align 4
22 shared_counter: .word 0 # Shared counter for barrier synchronization

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 28 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Convert lower cases to upper cases with fine-grain multi-threading

Listing – Text section : Initialization

1 .section .text
2 .globl _start
3
4 _start:
5 li t0, 32 # Length of the ASCII array (32 characters)
6 la t1, hart0_data # Load address of hart0 data
7 la t2, shared_counter # Load address of shared counter
8
9 # Determine hart id (for simplicity, using a fixed base register)

10 csrr a0, mhartid # Read the hart ID
11 slli a0, a0, 5 # Each hart's data starts 32 bytes apart
12 add t1, t1, a0 # Calculate start of this hart's data section

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 29 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Understanding ASCII characters

Figure – Example encoding of ASCII characters.

11. https ://www.ascii-code.net/

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 30 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Convert lower cases to upper cases with fine-grain multi-threading

Listing – Text section : Convert loop

1 # Character Conversion Loop
2 convert_loop:
3 lb a1, 0(t1) # Load character from array
4 #beqz a1, finish # End of string (null character), exit loop
5 li a2, 'a' # Load 'a'
6 li a3, 'z' # Load 'z'
7 blt a1, a2, next_char # If char < 'a', not a lowercase letter
8 bgt a1, a3, next_char # If char > 'z', not a lowercase letter
9

10 # Convert to uppercase
11 li a4, 32 # ASCII difference between upper and lower case
12 sub a1, a1, a4 # Convert to uppercase
13 sb a1, 0(t1) # Store back converted character
14
15 next_char:
16 addi t1, t1, 1 # Move to next character
17 addi t0, t0, -1 # Decrease character count
18 bnez t0, convert_loop # Continue loop if more characters

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 31 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Convert lower cases to upper cases with fine-grain multi-threading

Listing – Text section : Barrier and Termination

1 # Barrier Synchronization
2 finish:
3 li t6, 16 # Total number of harts
4 li t3, 1 # Atomic increment value
5 barrier:
6 lr.w t4, 0(t2) # Load current counter value
7 add t4, t4, t3 # Increment counter
8 sc.w t5, t4, 0(t2) # Store conditionally
9 bnez t5, barrier # Retry if SC failed

10 exit_barrier:
11 lw t4, 0(t2) # Total number of harts
12 bne t4, t6, exit_barrier # Wait until all harts have reached this point
13
14 # Termination
15 ecall # End program (simulated halt for each hart)

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 32 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Using a custom instruction in the convert loop

Open the file ../BRISKI/software/assembly/lower_upper_byte_custom.s

Listing – Text section : Convert loop with custom instruction

1 # Character Conversion Loop
2 convert_loop:
3 lb a1, 0(t1) # Load character from array
4 #beqz a1, finish # End of string (null character), exit loop
5 #li a2, 'a' # Load 'a'
6 #li a3, 'z' # Load 'z'
7 #blt a1, a2, next_char # If char < 'a', not a lowercase letter
8 #bgt a1, a3, next_char # If char > 'z', not a lowercase letter
9

10 # Convert to uppercase
11 #li a4, 32 # ASCII difference between upper and lower case
12 #sub a1, a1, a4 # Convert to uppercase
13 lotoupcase a1, a1, x0 # Custom instruction: a1 = lotoupcase(a1)
14 sb a1, 0(t1) # Store back converted character
15
16 next_char:
17 addi t1, t1, 1 # Move to next character
18 addi t0, t0, -1 # Decrease character count
19 bnez t0, convert_loop # Continue loop if more characters

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 33 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Linker Description Script (.lds file)

Listing – Defining Memory layout for text and data (lower_upper_byte_custom.lds)

1 /* Define memory regions */
2 MEMORY
3 {
4 /* Define RAM and ROM memory regions with specific addresses and sizes */
5 RAM (rwx) : ORIGIN = 0x00000200, LENGTH = 3072
6 ROM (rx) : ORIGIN = 0x00000000, LENGTH = 1024
7 }
8
9 /* Define the sections and their placement */

10 SECTIONS
11 {
12 /* Place the .text section in ROM */
13 .text : {
14 *(.text) /* All .text sections from input files */
15 } >ROM
16
17 /* Place the .data section in RAM */
18 .data : {
19 *(.data) /* All .data sections from input files */
20 } >RAM
21
22 /* Additional sections can be added here */
23 }

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 34 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Makefile commands to generate executable instructions (.inst file)

Custom path of your configured toolchain

Open BRISKI/software/Makefile
Update USR_BIN to where your custom install path for the riscv-gnu-toolchain
($(HOME)/summer_school/riscv-custom/newlib/bin)

Listing – Makefile commands to generate executable instructions (.inst file)

1 PROG?=lower_upper_byte
2 RUN_DIR?=runs
3 #USR_BIN?=/usr/bin
4 USR_BIN?=/home/riadh/tools/riscv-newlib-installpath/bin
5
6 hex_gen: clean compile_link objdump_elf
7 python3 hexgen.py $(RUN_DIR)/$(PROG).asm $(RUN_DIR)/$(PROG).inst
8
9 compile_link:

10 mkdir -p $(RUN_DIR)
11 cd $(RUN_DIR) && $(USR_BIN)/riscv64-unknown-elf-gcc -march=rv32iazicsr -mabi=ilp32 -ffreestanding -nostdlib

-o $(PROG).elf -T ../assembly/$(PROG).lds ../assembly/$(PROG).s
12
13 objdump_elf: compile_link
14 cd $(RUN_DIR) && $(USR_BIN)/riscv64-unknown-elf-objdump -mriscv:rv32 -d -j .text -s -j .data $(PROG).elf > $

(PROG).asm

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 35 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Cloning and configuring the riscv-gnu-toolchain

Important Note

Skip this if you are using the provided Virtual Machine !

Listing – Pre-requisite packages

1 sudo apt-get install autoconf automake autotools-dev curl python3 libmpc-dev libmpfr-dev libgmp-dev gawk
build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev device-tree-compiler

Listing – Cloning the riscv-gnu-toolchain

1 git clone --recurse-submodules https://github.com/riscv/riscv-gnu-toolchain.git

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 36 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Cloning and configuring the riscv-gnu-toolchain

Skip this if you are using the provided Virtual Machine ! (prefix has already been configured to
/home/user/summer_school/riscv-custom/newlib)

Listing – the toolchain is assumed to be built in /opt/riscvcustom :

1 cd riscv-gnu-toolchain
2 ./configure --prefix=/home/user/summer_school/riscv-custom/newlib
3 make -j$(nproc)

Listing – Check the cross-compiler version

1 /home/user/summer_school/riscv-custom/newlib/bin/riscv64-unknown-elf-gcc --version

Listing – The riscv-opcodes directory should contain all opcodes

1 git clone https://github.com/riscv/riscv-opcodes

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 37 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Understanding RISC-V base instruction formats

2

2. https ://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 38 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Understanding RISC-V base instruction formats

3

3. https ://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 39 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Understanding RISC-V custom instruction encoding

4

4. https ://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 40 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding a custom instruction in the cross-compiler
Listing – Some of the opcodes in /home/user/summer_school/riscv-custom/riscv_opcodes/rv_i :

1 # rv_i
2 lui rd imm20 6..2=0x0D 1..0=3
3 auipc rd imm20 6..2=0x05 1..0=3
4 jal rd jimm20 6..2=0x1b 1..0=3
5 jalr rd rs1 imm12 14..12=0 6..2=0x19 1..0=3
6 beq bimm12hi rs1 rs2 bimm12lo 14..12=0 6..2=0x18 1..0=3
7 bne bimm12hi rs1 rs2 bimm12lo 14..12=1 6..2=0x18 1..0=3
8 blt bimm12hi rs1 rs2 bimm12lo 14..12=4 6..2=0x18 1..0=3
9 bge bimm12hi rs1 rs2 bimm12lo 14..12=5 6..2=0x18 1..0=3

10 bltu bimm12hi rs1 rs2 bimm12lo 14..12=6 6..2=0x18 1..0=3
11 bgeu bimm12hi rs1 rs2 bimm12lo 14..12=7 6..2=0x18 1..0=3
12 .
13 add rd rs1 rs2 31..25=0 14..12=0 6..2=0x0C 1..0=3
14 sub rd rs1 rs2 31..25=32 14..12=0 6..2=0x0C 1..0=3
15 sll rd rs1 rs2 31..25=0 14..12=1 6..2=0x0C 1..0=3
16 slt rd rs1 rs2 31..25=0 14..12=2 6..2=0x0C 1..0=3
17 sltu rd rs1 rs2 31..25=0 14..12=3 6..2=0x0C 1..0=3

We will follow the example of add opcode with 3 operands (rd, rs1 and rs2) :

Listing – Adding a custom instruction in /home/user/summer_school/riscv-custom/riscv_opcodes/rv_i :

1 #custom 0
2 lotoupcase rd rs1 rs2 31..25=1 14..12=0 6..2=2 1..0=3

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 41 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding a custom instruction in the cross-compiler

We have to generate MASK and MATCH for the custom instruction

Listing – the opcodes in riscv_opcodes/rv_i :

1 make

This will generate /home/user/summer_school/riscv-custom/riscv_opcodes/encoding.out.h
Check that file for :

Listing – from /home/user/summer_school/riscv-custom/riscv_opcodes/encoding.out.h :

1 #define MATCH_LOTOUPCASE 0x200000b
2 #define MASK_LOTOUPCASE 0xfe00707f

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 42 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding a custom instruction in the cross-compiler

MASK

Bits set to 1 in the MASK indicate positions that are significant and should be matched exactly, while bits set
to 0 indicate positions that can vary.

For example, consider an instruction with a 32-bit encoding. A MASK might look like 0xFFFFF000, which
means that the first 20 bits (from the left) of the instruction are significant for the purpose of matching. The
last 12 bits can vary without affecting the recognition of the instruction.

MATCH

When decoding an instruction, the relevant bits (as indicated by the MASK) are extracted from the
instruction, and if they match the bits specified by the MATCH value, the instruction is recognized as a
specific operation.

For example, if an instruction’s encoding is to be matched against a specific operation, the combination of
the MASK and MATCH will be used to identify whether the instruction corresponds to that operation.

How the cross compiler recognizes that an instruction is matched?

When an instruction is encountered, its relevant bits (as filtered by the MASK) are compared with the MATCH
value. If (instruction & MASK) == MATCH, then the instruction is recognized as the specific custom instruction.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 43 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding a custom instruction in the cross-compiler

Let’s Modify the binutils files :
/home/user/summer_school/riscv-custom/riscv-gnu-toolchain/binutils/include/opcode/riscv-opc.h should
be updated to add : (The + sign is indicating added lines and should not be added in your file)

Listing – adding the instruction to the riscv-opc.h

1 /* Instruction opcode macros. */
2 + #define MATCH_LOTOUPCASE 0x200000b
3 + #define MASK_LOTOUPCASE 0xfe00707f
4 #define MATCH_SLLI_RV32 0x1013
5 // [...]
6 #endif /* RISCV_ENCODING_H */
7 #ifdef DECLARE_INSN
8 + DECLARE_INSN(lotoupcase, MATCH_LOTOUPCASE, MASK_LOTOUPCASE)

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 44 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding a custom instruction in the cross-compiler

The related C source file
(/home/user/summer_school/riscv-custom/riscv-gnu-toolchain/binutils/opcodes/riscv-opc.c) needs to be
updated too : (The + sign is indicating added lines and should not be added in your file)

Listing – adding the instruction to the riscv-opc.c (under riscv-opcodes struct)

1 /* name, xlen, isa, operands, match, mask, match_func, pinfo. */
2 + {"lotoupcase", 0, INSN_CLASS_I, "d,s,t", MATCH_LOTOUPCASE, MASK_LOTOUPCASE, match_opcode, 0 },

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 45 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Implementing the custom instruction in the cross-compiler

Listing – rerun make

1
2 cd /home/user/summer_school/riscv-custom/riscv-gnu-toolchain
3 make clean
4 make -j$(nproc)

If you assigned ’nproc=4’ processors to your VM, you can set : make -j 4

This will take a while, Grab a coffe !

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 46 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Checking the custom instruction using the updated cross-compiler

Listing – Sample test

1 //Use this sample code to test your custom instruction:
2 #include <stdio.h>
3 int main(){
4 int a,b,c;
5 a = 'a';
6 b = 0;
7 asm volatile
8 (
9 "lotoupcase %[z], %[x], %[y]\n\t"

10 : [z] "=r" (c)
11 : [x] "r" (a), [y] "r" (b)
12);
13 return 0;
14 }

Listing – compile using the newly added custom instruction

1 /home/user/summer_school/riscv-custom/newlib/bin/riscv64-unknown-elf-gcc prog.c -o prog
2 file prog

Congratulations ! ! ! you just compiled a program using your first custom instruction !

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 47 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Hands-on Lab

Add another custom instruction and recompile the toolchain

Replay the previous steps to implement a custom instruction that performs the opposite computation :
Converting ASCII characters from Upper to lower case.

Recompiling the toolchain will take some 30 mins depending on your machines.

Lets launch the recompilation before the coffee break !

Files that you will use/modify

../riscv-custom/riscv_opcodes/rv_i

../riscv-custom/riscv-opcodes/encoding.out.h

../riscv-custom/riscv-gnu-toolchain/binutils/include/opcode/riscv-opc.h

../riscv-custom/riscv-gnu-toolchain/binutils/opcodes/riscv-opc.c

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 48 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 49 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Remember BRISKI? (Barrel RISC-V for Kilo-core Implementations)
EXECUTE MEMORY WRITE-BACKDECODEFETCH

slt

WB
MUX

ALU
OP2
MUX

branch
MUX

OP1
MUX

PC
MUX is

br
an
ch

isjump

4

Figure – BRISKI Barrel Processor Architecture.

RTL modules to be updated

(control_unit.sv) and (alu_control.sv) and (alu.sv)

and do not forget riscv-pkg.sv where all parameters reside.

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 50 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Modifying riscv-pkg.sv

Listing – riscv_pkg.sv

1 //===========================
2 // ALU specific params
3 //===========================
4 parameter int ALUOP_WIDTH = 4;
5 parameter logic [ALUOP_WIDTH-1:0] ADD_OP = 4'b0000;
6 parameter logic [ALUOP_WIDTH-1:0] SUB_OP = 4'b0001;
7 parameter logic [ALUOP_WIDTH-1:0] OR_OP = 4'b1000;
8 parameter logic [ALUOP_WIDTH-1:0] AND_OP = 4'b1001;
9 parameter logic [ALUOP_WIDTH-1:0] XOR_OP = 4'b0101;

10 parameter logic [ALUOP_WIDTH-1:0] PASS_OP = 4'b1010;
11 parameter logic [ALUOP_WIDTH-1:0] SLT_OP = 4'b0011;
12 parameter logic [ALUOP_WIDTH-1:0] SLTU_OP = 4'b0100;
13 parameter logic [ALUOP_WIDTH-1:0] SLL_OP = 4'b0010;
14 parameter logic [ALUOP_WIDTH-1:0] SRL_OP = 4'b0110;
15 parameter logic [ALUOP_WIDTH-1:0] SRA_OP = 4'b0111;
16 parameter logic [ALUOP_WIDTH-1:0] LOTOUPC_OP = 4'b1011; //Lower to Upper case OP

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 51 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Modifying control_unit.sv

Listing – control_unit.sv

1
2 // custom-0-type instructions
3 7'b0001011: begin
4 o_WBSel = 2'b01; //we need to select the output from the ALU.
5 o_regWE = 1'b1; // We need to enable writes to register file
6 o_ALUctrl = 3'b100; //we need to select the desired custom instruction on the alu_control decoder.
7 end

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 52 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Modifying alu_control.sv

Listing – alu_control.sv

1
2 3'b100: //custom-0
3 case (i_funct3)
4 3'b000:
5 case (i_funct7)
6 7'b0000001: o_ALUOp <= LOTOUPC_OP; // lotoupcase
7 default: o_ALUOp <= '0;
8 endcase
9 default: o_ALUOp <= '0; // Undefined operation

10 endcase
11 default: o_ALUOp <= '0; // Undefined operation

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 53 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Modifying alu.sv

Listing – alu.sv

1 logic [DWIDTH-1:0] o_result_lotoupc;
2
3 always_comb begin
4 shamt = i_op2[4:0];
5 end
6
7 always_comb begin
8 o_result_add = (i_aluop == ADD_OP) ? i_op1 + i_op2 : 0;
9 o_result_sub = (i_aluop == SUB_OP) ? i_op1 - i_op2 : 0;

10 o_result_sll = (i_aluop == SLL_OP) ? i_op1 << shamt : 0;
11 o_result_xor = (i_aluop == XOR_OP) ? i_op1 ^ i_op2 : 0;
12 o_result_or = (i_aluop == OR_OP) ? i_op1 | i_op2 : 0;
13 o_result_and = (i_aluop == AND_OP) ? i_op1 & i_op2 : 0;
14 o_result_pass = (i_aluop == PASS_OP) ? i_op2 : 0;
15 o_result_srl_sra = (i_aluop == SRL_OP || i_aluop == SRA_OP) ? temp : 0;
16 o_result_lotoupc = (i_aluop == LOTOUPC_OP)? (((i_op1 < 97) || (i_op1 > 122))? i_op1 : i_op1-32) : 0;
17 end
18
19 always_ff @(posedge clk) begin
20 o_result <= o_result_add ^ o_result_sub ^ o_result_sll ^ o_result_xor ^ o_result_srl_sra ^ o_result_or ^

o_result_and ^ o_result_pass ^ o_result_lotoupc;
21 end

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 54 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 55 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding the custom instruction to the software simulator for testing

Listing – Where to add a custom instruction in the BRISKI software simulator.

1 switch (opcode) {
2 // -- This a custom instruction that reads the contents of register[rs1], check if it is a lower case

letter then
3 // subtracts 32 to make it upper case
4 case 0x0B: // custom-0 type (opcode = 0b0001011)
5 switch (funct3) {
6 case 0x0: //(funct3 = 0b000)
7 if (funct7=0x01){ // (funct7 = 0b0000000) lower to upper case byte
8 //if ((registers[hart_id][rs1] > 'z') && (registers[hart_id][rs1] <'a')) {// not a

lower case
9 if ((registers[hart_id][rs1] > 122) || (registers[hart_id][rs1] < 97)) {// not a

lower case
10 } else {
11 registers[hart_id][rd] = registers[hart_id][rs1] - 32;
12 }
13 }
14 break;
15 default : ; break;
16 }
17 pc[hart_id]+=4;
18 break;

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 56 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Adding the custom instruction to the software simulator for testing

Listing – running the automated check

1
2 $ pwd
3 ../[BRISKI]
4 $ cd hardware/simul/verilator/
5 $ make check_all

How it is checked?

If everything is correctly compiled, the last command should generate a memory dump of the rtl design by
using verilator (rtl_memory.txt) and another memory dump of the software simulator memory
(./simulation_model/memory.txt) after g++ compilation.

A simple diff command is called to compare both memory dumps.

If everything is matching you will get an OK, otherwise, it will display a failing message.

If it fails, try vimdiff to check which memory addresses differs. This can give you hints to debug. GOOD
LUCK!
If it succeeds, you succeeded in adding your first custom instruction. CONGRATULATIONS!

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 57 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Outline

1 Introduction

2 General Concepts

3 BRISKI Barrel Processor

4 Adding Custom Instructions to the tool chain

5 RTL support of Custom Instructions

6 Testing it all

7 Another one

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 58 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Advanced follow-up Lab

A more challenging example

Take this challenge if :

Adding a custom instruction was a piece of cake for you.

You crave challenges and enjoy struggles in your life.

Your next task would be to add a more efficient custom instruction.
This instruction allows you to :

Select either upper-to-lower or lower-to-upper-case. You can use the second register rs2, to specify the
desired behavior.

Convert up to four bytes, in one go. You can use the second register rs2, to specify how many bytes to
convert from your provided word aligned address in rs1.

Happy Hacking !

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 59 / 60

Introduction General Concepts BRISKI Barrel Processor Adding Custom Instructions to the tool chain RTL support of Custom Instructions Testing it all Another one

Thank you for your attention !

Boosting the efficiency of RISC-V cores: Fine-grain multi-threading and custom instructions, from concepts to implementation FPGA Ignite Summer School 2024 60 / 60

	Introduction
	General Concepts
	BRISKI Barrel Processor
	Adding Custom Instructions to the tool chain
	RTL support of Custom Instructions
	Testing it all
	Another one

