
FPGA Ignite 2024
Cocotb Primer

Marc-André Tétrault, Eng., PhD.

6/08/2024

3

Distributed digital design for medical imaging

Sherbrooke Prototype

LabPET

2

1

3

Lecomte et al Fontaine, Lecomte et al Pratte, Charlebois et al

3D dSiPM

4

Recent project/collaborations
Postdoc

UHR/SAVANT Brain scanners
Lecomte, El Fakhri, Fontaine et al

5

J.Rossignol et al. Time-of-Flight Computed

Tomography: Proof of Principle and Challenges

Current
ToF CT

Bérubé-Lauzière, Corbeil Therrien, Tétrault, Fontaine et al

Cocotb
Coroutine cosimulation testbench

Uses Python instead of HDL/tailored language

- Python widely used by students and scientists

- Access to Python packages

- Object Oriented Programming support

- Open Source

Cocotb – Link with simulator
- Simulator compiles HDL

- Flow control is swapped between

 simulator and Python code.

From https://indico.cern.ch/event/776422/

Supported simulators
Commercial

Incisive/Xcellium

Questa/Modelsim

VCS

Open-source

Verilator

GHDL

Icarus Verilog

…

More at https://en.wikipedia.org/wiki/List_of_HDL_simulators

Opensource vs commercial simulators
Commercial

Mixed langage

Advanced features (SVA)

Waveform viewer

Open-source

Single language

Community support

External waveform viewer

Why change simulation language?
Verification compares models

- The HDL model (Behavioural, RTL, gate level)

vs

- The testbench model (expected outcomes)

Same language → risk of very similar models (and errors)

Cocotb – Hands-on Primer
What I wished I had seen or known when I started out

- First look at major components (launcher and sample test)

- How to debug this test bench?

- How to make it easy to reuse and modify my testbench code

- Verification automation

Cocotb – Hands-on Primer

Primer expects basic HDL/Linux experience

Aims to rely on Open Source tools

- Uses VHDL, with the GHDL simulator

- Uses GtkWave to view waveforms

- Basic text editors (nano, vim, gedit) for file edition

- VSCodium (not quite VSCode) for interactive debugging

Lab 1
First contact

Lab 1
Objectives

- Launch a cocotb simulation.

- Add command line arguments to the underlying simulator
(ghdl in this case).

- View waveforms using gtkwave.

- Learn from error messages

Lab 1 - Design
Simple adder from the official cocotb git repository (v1.8)

 cocotb/example/adder

Three files:

- Simple HDL Adder

- Python model (addition)

- Cocotb test and runner

 * first part is testbench

 * second part is runner/simulator call

Lab 1 - Design
Changes and simplifications

- Removed simulator configurability: GHDL simulator only

- Removed langage configurability : VHDL only

- Simplified options

- Added comments

Lab 1 - Design

Lab 1 - GtkWave

Lab 2
Customizing a cocotb template

Lab 2
Objectives

- Write your first customized Cocotb runner.

- Write your first Cocotb test.

- Automate verification (confirm design function without
waveforms)

Lab 2 - Design
Square root arithmetic core from

https://vhdlguru.blogspot.com/2020/12/synthesizable
-clocked-square-root.html

Two files:

- Square root arithmetic core (provided)

- Cocotb test and runner

* first part is testbench (edit second)

* second part is runner/simulator call (edit first)

Lab 2 - Design
Interface: clk, reset, input interface, output interface

clk

reset

arg_valid

arg(31:0)

sqrt_valid

sqrt_res(15:0)

Square Root Core, 32-bit integer input

Lab 2 - Work
- Modify the runner to match the provided design

- Learn Cocotb relevant Python keywords

- Add very simple test for arithmetic core

Note: Python “async” and “await” keywords are not in typical Python
scripts and programs (yield in older cocotb versions)

Use the Snippets File!

- Faster than google ☺

Lab 2 – Expected outcome

Lab 2 – GtkWave Tip

Lab 3
Interactive debugging

Lab 3 - Debugging
Error messages may come from

- Starting the simulator (like in lab 1)

- HDL compile errors

- Python syntax (during execution)

- Testbench assertion failures

Using « print » functions is very inefficient

Lab 3 – Why not directly from a GUI?
With Cocotb, the simulator calls Python.

Need to add a hook in Cocotb tests, where the IDE can connect.

Supported in PyCharm Pro, but not PyCharm Community

https://blog.patfarley.org/pages/cocotb-pycharm.html

Supported in VSCode/VSCodium

Lab 3 - Objectives

- Use an IDE to graphically debug a cocotb test.

- Configure the cocotb test to support debug.

- Configure VSCodium to attach to the cocotb test.

- Add break points in the cocotb test.

- Inspect variables and dut signals within the IDE.

Lab 3 – Test project

Copy of solution from Lab 2, already provided

clk

reset

arg_valid

arg(31:0)

sqrt_valid

sqrt_res(15:0)

Lab 3 – Visual steps

Lab 3 – Visual steps

1
2

3

Lab 3 – Visual steps
And then press
« enter » twice for the
server name and port

- localhost

- 5678

Lab 3 – Visual steps

Lab 3 – Visual steps

Lab 4
Code reuse 1 - functions and drivers

Lab 4

Custom designs → custom testbench

Some parts are standard, like busses. Some are simple
(UART), others more detailed (PCIe).

They might already exist somewhere in another project…?

Lab 4 – Cocotb extensions
Mainly bus/communication protocols

Many available through python/pip3: ethernet, AXI, spi, uart…

https://pypi.org/search/?q=cocotbext

Others available from private repositories: ahb, …

https://pypi.org/search/?q=cocotbext

Lab 4 - Objectives

- Encapsulate reusable sequences in functions

- Use a cocotb extension to control a UART standard interface

- Get familiar with the data format used by the UART
extension, and how to make conversions.

Lab 4 - Design

SQRT
8-bit
input

UART
Rx

1 Mbps
8-bit

UART
Tx

1 Mbps
8-bit

UART
driver

UART
sink

Cocotb test

8-bit 4-bit
Padding

8-bit

« bytes/bytearray » python type « bytearray » python type

Lab 4 - Work
Update the runner to include the multi-file design

- add all VHDL files

Encapsulate init sequence and end-of-sim time

- use a function, not forgetting the special keywords

Use cocotbext-UART

- Add and use a driver and a sink object

Use native Python functions for conversion from/to bytearray

Note: Don’t forget the snippets file!

Lab 4 – Expected outcome

Lab 5
Code reuse 2 – object oriented programming

Lab 5
Designs are complex : the verification code is not simpler

Universal Verification Methodology (UVM)

- Leverages Object Oriented Programming (OOP)

- Not supported by VHDL/Verilog; typically SystemVerilog

- Standardize structure and methods; excellent when buying a
verification code

Steep ramp-up, requires simulation-specific SystemVerilog
training, few students/scientists have basics on this topic.

Lab 5 – Cocotb with OOP
Python supports OOP, so cocotb does as well

UVM not required for small/medium sized designs

Planning a base class ahead will save a lot of time

- This is software programming, not firwmare/HDL
programming

- Larger pool of trained students and scientists can contribute

Lab 5 - Objectives

- Get familiar with a simple object oriented testbench structure.

- Populate the provided template with code prepared in
previous labs.

- Write two different cocotb tests sharing the same base class.

Lab 5 – Design (same as lab 4)

SQRT
8-bit
input

UART
Rx

1 Mbps
8-bit

UART
Tx

1 Mbps
8-bit

UART
driver

UART
sink

Cocotb test

8-bit 4-bit
Padding

8-bit

« bytes/bytearray » python type « bytearray » python type

Lab 5 – Base Environment

Strongly inspired by chapter 1 from C. Spear, « System Verilog for Verification », second edition, 2008

constructor (__init__)
- save dut pointer
- initialize logging utility

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

Lab 5 – Base Environment

constructor (__init__)
- save dut pointer
- initialize logging utility

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

Strongly inspired by chapter 1 from C. Spear, « System Verilog for Verification », second edition, 2008

Constructor – dut and logs pointers

Build the environment

- Connect drivers, sinks, etc.

- Connect checkers (lab 6)

Start clock and reset dut (same as
lab 4)

constructor (__init__)
- save dut pointer
- initialize logging utility

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

Lab 5 – Base Environment

Strongly inspired by chapter 1 from C. Spear, « System Verilog for Verification », second edition, 2008

Configure DUT – enable channels,
set thresholds, set bias, etc.

Start the environment

- enable drivers, waveform
generators, enable checkers…

Post test – wait for unfinished
transactions or packets

constructor (__init__)
- save dut pointer
- initialize logging utility

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

Lab 5 – Base Environment

Strongly inspired by chapter 1 from C. Spear, « System Verilog for Verification », second edition, 2008

Test: Pure virtual (undefined) in
base class, forces designers to
derive the class and override the
test.

Run: executes steps in the same
order for all tests.

constructor (__init__)
- save dut pointer
- initialize logging utility

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

Lab 5 – Child Classes

Contributors can focus their efforts
on the test, relying on the
environment

Actual test 1

Actual test 2

Actual test 3

Inheritance

Lab 5 – Template and work

test 1: hard-coded values for sqrt

test 2: random values for sqrt

constructor (__init__)
- save dut pointer (done)
- initialize logging utility (done)

build environment
Init I/Os, clock and reset
configure dut
start environment
target test (pure virtual function)
post-test sequences
- wait for ongoing transactions to finish

run function
- executes these steps one after the other

In this lab, simple core, so no need
for configuration phase.

« Start environment » will be used
in lab 6.

Lab 5 – Expected outcome

- Same waveform patterns as in lab 4.

Note: the two simulations will be appended
in the same VCD file. Raising the reset at the end of a
test (i.e. in the post-test sequence) helps to see this

Lab 6
Code reuse 3 – Monitors, Models and Checkers

Lab 6
Labs 4 and 5 see the DUT as a black box

When an error occurs, it is not always clear where the problem
originates from. The designer needs to read the waveforms to find
the issue.

Localized tests accelerate bug localization
System Verilog Assertions:
- industry standard, but…
- not supported by free/open source simulators
- Exceptions? If you know, I want to know about them!

Lab 6 – MMC construct
Monitor(s), Model and Checker

Monitors are probes, only recovering useful data from signals

- Conditions to record data depends on the interface

- Example: AXI bus needs to consider address, valid, ready
and data signals

- Most simple interface : enable + data (sqrt core)

Lab 6 – MMC construct
Monitor(s), Model and Checker

Monitors are threads, basically while(true) loop.

In some cases, should not run while design is in an unstable
state

- For example, not during the reset sequence

Monitor threads thus often have start/stop methods.

Lab 6 – MMC construct
Monitor(s), Model and Checker

Models generate the expected result from the HDL module.
For example, CRC core, square root, FIFO, Data packet,
compressed packet, etc.

Models should not have notion of clock or signals. Only data.

- Ensures model is different from HDL, improving error
detection

- Should make the model easier to code compared to HDL

Lab 6 – MMC construct
Monitor(s), Model and Checker

Checkers compare the result from the model and the HDL
module

- Declares an error when differences are found

- Log utility provides instance location within the dut

Lab 6 – MMC construct
Monitor(s), Model and Checker

SQRT
8-bit
input

UART
Rx

1 Mbps
8-bit

UART
Tx

1 Mbps
8-bit

UART
driver

UART
sink

Cocotb test

Padding

Input IF Mon

Output IF Mon

Model

Checker

Lab 6 - Objectives
- Reuse a monitor class from the cocotb main repository

- Adapt MMC class to the sqrt core.

- Attach MMC object to the base environment from lab 5

Warning: the template class from the cocotb repo uses
efficient but less easy to understand native python constructs.
Read the added comments for an initial explanations on these
if they are not familiar to you.

Lab 6.1 – MMC construction overview
How to write a checker (unit test) class

1- Create a monitor on the HDL input interface, connecting
with its signals, in the constructor.

2- Create a monitor on the HDL output interface, connecting
with its signals, in the constructor

3- Write a model method

4- Write a checker/test method

5- Write a “start” and a “stop method, launching and stopping
the threads for the two monitors and the checker

Lab 6.2 – MMC insertion in base class

1- Add an MMC instance in the “BuildEnvironment” method

2- Add a “StartEnvironment” method, in which the MMC.start()
will be called

3- In the post-simulation method, call the MMC.stop() method

4- Run the existing test(s)

Lab 6 – Solution split in 2 files
- You could put everything in the same file, but…

- Monitor and MMC classes together in a separate file for
clarity and portability

- File with base environment class must import MMC class
(basic Python import keyword)

Lab 6 – Expected outcome

- Same waveform patterns as in lab 4.

- Error messages will pinpoint the error location

Introduce an error in the model to generate a failure

- The assertion in the test is still relevant:

would indicate that something is wrong after the sqrt core

Lab 6 – Interesting « bug »
If a test fails, it stops at the (Python) assertion

It does not start a new simulation, but continues where the previous
one stopped.

Notice here the UART modules have no reset signal.

If the simulation failed while the UART is transmitting, it will do so
regardless that the first test stopped, making the next test fail.

Fix 1 – add reset to uart in HDL

Fix 2 – make reset time much longer, and clear the uart_sink after
the long reset.

Fix 3 – What could be your solution?

Last slide

	Slide 1: FPGA Ignite 2024
	Slide 2
	Slide 3
	Slide 4: Distributed digital design for medical imaging
	Slide 5: Recent project/collaborations
	Slide 6: Cocotb
	Slide 7: Cocotb – Link with simulator
	Slide 8: Supported simulators
	Slide 9: Opensource vs commercial simulators
	Slide 10: Why change simulation language?
	Slide 11: Cocotb – Hands-on Primer
	Slide 12: Cocotb – Hands-on Primer
	Slide 13: Lab 1
	Slide 14: Lab 1
	Slide 15: Lab 1 - Design
	Slide 16: Lab 1 - Design
	Slide 17: Lab 1 - Design
	Slide 18: Lab 1 - GtkWave
	Slide 19: Lab 2
	Slide 20: Lab 2
	Slide 21: Lab 2 - Design
	Slide 22: Lab 2 - Design
	Slide 23: Lab 2 - Work
	Slide 24: Lab 2 – Expected outcome
	Slide 25: Lab 2 – GtkWave Tip
	Slide 26: Lab 3
	Slide 27: Lab 3 - Debugging
	Slide 28: Lab 3 – Why not directly from a GUI?
	Slide 29: Lab 3 - Objectives
	Slide 30: Lab 3 – Test project
	Slide 31: Lab 3 – Visual steps
	Slide 32: Lab 3 – Visual steps
	Slide 33: Lab 3 – Visual steps
	Slide 34: Lab 3 – Visual steps
	Slide 35: Lab 3 – Visual steps
	Slide 36: Lab 4
	Slide 37: Lab 4
	Slide 38: Lab 4 – Cocotb extensions
	Slide 39: Lab 4 - Objectives
	Slide 40: Lab 4 - Design
	Slide 41: Lab 4 - Work
	Slide 42: Lab 4 – Expected outcome
	Slide 43: Lab 5
	Slide 44: Lab 5
	Slide 45: Lab 5 – Cocotb with OOP
	Slide 46: Lab 5 - Objectives
	Slide 47: Lab 5 – Design (same as lab 4)
	Slide 48: Lab 5 – Base Environment
	Slide 49: Lab 5 – Base Environment
	Slide 50: Lab 5 – Base Environment
	Slide 51: Lab 5 – Base Environment
	Slide 52: Lab 5 – Child Classes
	Slide 53: Lab 5 – Template and work
	Slide 54: Lab 5 – Expected outcome
	Slide 55: Lab 6
	Slide 56: Lab 6
	Slide 57: Lab 6 – MMC construct
	Slide 58: Lab 6 – MMC construct
	Slide 59: Lab 6 – MMC construct
	Slide 60: Lab 6 – MMC construct
	Slide 61: Lab 6 – MMC construct
	Slide 62: Lab 6 - Objectives
	Slide 63: Lab 6.1 – MMC construction overview
	Slide 64: Lab 6.2 – MMC insertion in base class
	Slide 65: Lab 6 – Solution split in 2 files
	Slide 66: Lab 6 – Expected outcome
	Slide 67: Lab 6 – Interesting « bug »
	Slide 68: Last slide

