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Accelerator Coupling 

Loosely Coupled

▪ For „large“ acceleration tasks

▪ Compress image / video

▪ Encrypt 

▪ Called through drivers

▪ Hardware-centric (mostly 

stand alone processing)

▪ Complex to design

CPU MEM I/OACC CPU MEM I/O

A
C

C

Tightly Coupled

▪ For „small“ acceleration tasks

▪ Parity, count-ones 

▪ CRC

▪ Called in user mode

▪ Software-centric

(fine-grained function calls)

▪ Easy to design 
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Reconfigurable Instruction Set Extensions

▪ Present GP CPU micro architectures leave not much headroom for optimization

▪ CPU clock is limited by power

→ trend to feature-rich instruction sets and acceleration

▪ Note that instructions have a shelf life
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Possibilities to add Custom Instructions

▪ Instructions implemented statically in hardware

▪ Instructions implemented with reconfigurable hardware (e.g., eFPGA)

▪ ISA subsetting: kick out unused instructions (usually for FPGAs only)

▪ Instructions emulated in software (may speed-up your system)

Why/How?

▪ Adding instructions can make your CPU run slower!

→ removing instructions may make your CPU faster

→ will benefit all instructions!

→ can offset the cost for software emulation (if instr. triggered seldomly)
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Possibilities to add Custom Instructions

▪ Static Instructions

▪ Reconfigurable Instructions

▪ ISA subsetting

▪ Software emulation

When what?
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Possibilities to add Custom Instructions

▪ Sliding window approach

▪ Slide a window of size t_reconfiguration over the instruction 

stream (for each instruction separately)

▪ Empty spots in the filtered trace mean reconfiguration is feasible

Design Techniques for 

Increasing Performance and

Resource Utilization of 

Reconfigurable Soft CPUs

DDECS 2018
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Possibilities to add Custom Instructions

▪ Configuration is relatively slow → we need course scheduling granularity

▪ Perhaps at program level (custom HW Kernels)
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Reconfigurable Instruction Set Extensions

▪ Let’s replace the NEON vector unit with an FPGA fabric 

of ~identical size (i.e. 2080 LUTs, 16 DSPs, 8 BRAMs)

▪ Interesting for low precision SIMD arithmetic 

(128 bits allow 42 3-bit multiplications costing 1764 LUTs)

Dual ARM A9 SoC Floorplan Zynq chip with ARM SoC

soft-NEON: A study on replacing 

the NEON engine of an ARM SoC 

with a reconfigurable fabric

ASAP 2016
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Reconfigurable Instruction Set Extensions

▪ The logic resources are about one 32-bit softcore CPU

▪ Vector interface allows more operands and results and…

▪ …allows catching up with the faster hardened part

soft-NEON: A study on replacing 

the NEON engine of an ARM SoC 

with a reconfigurable fabric

ASAP 2016
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Tightly Coupled Reconfigurable Instructions 

Candidates:

▪ int foo (int OP_A, OP_B);

▪ DES, AES, SHA1-3, MD5

Montgomery, CRC, …

▪ Hash functions

▪ (De)Compression

(Huffman, bit-level)

▪ Consider internal registers / register files

▪ Not bound to 2 x input, 1 x output

→ int foo1 (int OP_A, OP_B); int foo2 (int OP_C, OP_D); 

→ push / pop

▪ Breakpoints, watchpoints (complex triggering), event counters

▪ Replacing defect operations???

Peer et al. ”Human Skin Colour 

Clustering for Face Detection”
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Study: Soft-NEON

▪ An Interlay is reconfigurable!

▪ ISA subsetting

▪ Vector width customization

▪ Operation folding
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Custom Interlay – RISK-V Prototype

▪ As a test vehicle, we implemented a dual-core RISC-V with a shared Interlay

Cortex-A9 SoC Floorplan

NEON Area: 2080 LUTs, 16 

DSPs, 16 BRAMs[2]

Dual-Core RISC-V with a PR 

shared custom unit floorplan 

PR Shared Area: 2082 LUTs

Slot: 694 LUTs

Dual-Ibex-Crypto-eFPGA for 

cryptography

Google Shuttle - MPW4

https://github.com/nguyendao-

uom/ICESOC
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Implementation

▪ Sliding window approach

▪ Slide a window of size t_reconfiguration over the instruction

▪ Easy method: tab into the operands and multiplex in a result

→may require different number clock cycles to evaluate
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Implementation
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Reconfigurable Instruction Set Extensions

The FlexBex (Ibex with eFPGA) approach:

We use the following instruction encoding:

eFPGA[result_select]d[delay] dest, RS1, RS2 // delay: 0…15 cycles 

▪ Register manipulation instruction: dest  RS1  OP RS2

▪ Inline assembly:

FlexBex: A RISC-V with a 

Reconfigurable

Instruction Extension

FPT 2020
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Reconfigurable Instruction Set Extensions

Alternative: configurable instruction encoding:

Idea:

▪ After configuring the CI, the OS/driver writes some registers to instruct 

the CPU ho to decode/use that instruction

→ allows relocating instructions to different slots (defragmentation!)

→ allows slot-dependent latency

→ maybe key to port instructions to different process nodes

▪ Problem: we can have an infinite number of CIs (overload Encoding?)

Instruction Slot Delay slots

Encoding [NULL/trap, 1, 2, ...] [const, dynamic]

Encoding [NULL/trap, 1, 2, ...] [const, dynamic]

...
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ISA Extensions – Discussion 

What we haven’t discussed:

• Stateless versus stateful instructions

→ how do we do context switches? (an OS must be able to discover this)

→ does it need to support reentrant mode? (for recursion or multiple threads)

→ Simple case: MULACC: acc  acc + (RS1 x RS2)

(needs some thought how to recover state after context switch)

• Prevent Deadlocks if instruction isn’t available

→ software fallback (usually traps)

• How do we control configuration?

→ explicit per config request?

→ implicit per trap? (e.g., run n-times emulation before configuration)
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ISA Extensions – Discussion 

What we haven’t discussed:

• Do we want to share instructions among cores?

→ creates resource conflict (needs arbitration)

→ creates extra latency

→ may that cause deadlocks?

→ security (e.g., Spectre-kind of attacks)?

→ much more complex but possibly better resource utilization

• Can tasks move to different cores?

→ needs moving the configuration

• Can customs instructions be ported among systems?

• Can we support iteration intervals of 1?
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ISA Extensions – Discussion 

What we haven’t discussed:

• How do allocate reconfigurable resources among CIs?

→ we may have multiple Tasks

• Must be implemented efficient (or the benefit of CIs will be offset)

→ instruction cycles & code density

e.g.: if a CI saves 20 instructions each extra cycle eats 5% efficiency

→ worse in reality as we are not firing the CI all the time

→ CIs are usually doing more work but also more latency…

• In summery: the potential using reconfigurable CIs is huge but it is non-trivial

to feature this in a full-blown OS with multicore, multi tenancy, etc. support.
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Reconfigurable Instruction Set Extensions 

using FABulous eFPGAs - when and how
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▪ Fully integrated open-source FPGA framework with good quality of results

(area & performance)

▪ Entirely open and free, including commercial use 

(we integrated many other projects: Yosys, ABC, OpenRAM)

▪ Supports custom cells (if provided) → some tooling is on the way

▪ Supports partial reconfiguration

▪ Designed for ease of use while providing full control as needed

▪ Versatile

▪ Different flows (OpenLane →Cadance) (Yosys/nextpnr → VPR)

▪ Easy to customize, including the integration of own IP

What is FABulous offering? 
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▪ Fully integrated 

framework for 

eFPGAs

Uses many projects:

▪ Yosys & ABC

▪ nextpnr

▪ OpenLANE

▪ VPR

▪ OpenRAM

▪ Verilator

The FABulous Framework 
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Look-up tables (LUTs) as the basic 

building block for implementing logic
1 A3, A2, A1, A0

LUT-value 

AND gate

LUT-value OR 

gate 

0 OOOO 0 0

1 OOO1 0 1

2 OO1O 0 1

3 OO11 0 1

4 O1OO 0 1

5 O1O1 0 1

6 O11O 0 1

7 O111 0 1

8 1OOO 0 1

9 1OO1 0 1

A 1O1O 0 1

B 1O11 0 1

C 11OO 0 1

D 11O1 0 1

E 111O 0 1

F 1111 1 1

A
0

...

A
3

A
0

...

A
3

FPGA Basics – Logic  

truth

table
A

0

A
1

A
2

A
3
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Routing

▪ FPGAs are made vastly of:

- (wide) Multiplexers

- Configuration Latches

▪ Customizing these tactical cells* 

provides most efficiency gain

*Victor Aken’Ova. 2005. Bridging the Gap Between 

Soft and Hard eFPGA Design. MSc Thesis. UBC
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LUTs help with the routing (pin swaps are for free)  
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FPGA Basics – FPGA Fabric

▪ Example of an FPGA fabric composed of LUTs, switch matrices and I/O cells. 
Other common primitives: memories, multipliers, transceivers, …
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FPGA Basics – FPGA Fabric
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FPGA Basics – FPGA Fabric
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Switch matrix

1.LUT input muxes

2.Constant input value

3.LUT and Flop 

output muxes

▪ Rest: local routing

▪ Virtex II 

▪ 332 inputs

▪ 160 multiplexer

▪ Virtex V

▪ 305 inputs

▪ 172 Multiplexer
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Rough Cost Estimate
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FPGA Configuration

▪ The easiest way to implement configuration storage is using a shift register

▪ Bit-wise addressing is way too expensive!

→ frame-based reconfiguration

▪ But how do we update individual 
switch matrix multiplexers?
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FPGA Configuration (as used in FABulous)
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▪ Basic tiles have same height, but type-specific width (for logic tiles, DSPs, etc.)

▪ Adjacent tiles can be fused for more complex blocks (see the DSP example) →Supertile
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▪ I/Os belong logically to the fabric but are physically routed to the surrounding

▪ Internal wires, buses, etc. are „just“ wires at the border of the fabric

Basic concepts 
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▪ 4 x register file, 2 x DSPs,  4 x LUTs (CLB), I/Os left and right, 

Let‘s build a small eFPGA: Fabric Definition 
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▪ 4 x register file, 2 x DSPs,  8 x LUT-tiles (CLB), I/Os left and right, 

▪ A fabric is modelled as a spreadsheet (tiles are references to tile descriptors)

Let‘s build a small eFPGA: Fabric Definition 
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Let‘s build a small eFPGA: Tile Definition 
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▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage
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Let‘s build a small eFPGA: Tile Definition 
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▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage



‹#›

eFPGA Ecosystem – Tile/Wire Definitions

▪ Wires are defined by

<direction> <symbolic begin|end names> <target offset> <# wires> 

▪ Jump wires for hierarchical routing (Intel/Altera and Xilinx UltraScale style)
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eFPGA Ecosystem – Switch Matrix Definition

▪ Describes the adjacency in a symbolic way

<mux_output>,<mux_input>

▪ Alternatively adjacency matrix
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The FABulous eFPGA Ecosystem 

▪ FABulous eFPGA generator

▪ ASIC RTL and 

constraints generation

▪Generating models for

nextpnpr/VPR flows

▪ FPGA emulation

▪ Virtex-II, Lattice clones

(patent-free!)

▪ See our FPGA 2021 paper

„FABulous: An Embedded 

FPGA Framework”
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▪ Built using open tools

(Yosys, OpenLane, Verilator…) 

▪ Open PDK

(Skywater 130 process)

▪ Google Shuttle (MPW5): 

https://github.com/nguyendao-

uom/open_eFPGA

The first open-everything FPGA 
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FABulous Chip Gallery

Sky130 with CLBs, DSPs, 

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel
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FABulous Chip Gallery

Sky130 with CLBs, DSPs, 

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel
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FABulous Chip Gallery

Dual-Ibex-Crypto-eFPGA

Google Shuttle - MPW-4

(custom instructions,

T-shaped fabric)
https://github.com/nguyendao-uom/ICESOC
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FABulous Chip Gallery

Open ReRAM FPGA test chip

▪ Sky130, Google Shuttle

MPW4https://github.com/nguyendao-uom/rram_testchip

▪ Just enough logic to send 

„Hello World“ to a UART

▪ Different configuration modes

Posible advantages of ReRAM FPGAs

▪ Security (user circuit is encoded in resitsive states)

▪ Reliability (ReRAM is radiation hard)

▪ Probably density

▪ Instantanous on

▪ CMOS friendly
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FABulous versus OpenFPGA (on Sky130)

▪ FABulous and OpenFPGA have

a Google Shuttle2 submission

▪ ~ same physical impl. problem

▪ OpenFPGA CLBs are 17% bigger

▪ New optimizations gave us further 21.7% in density on the same netlist!

~1200 MUX2
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The FABulous eFPGA Framework – Wrap-up 

▪ Heterogeneous (FPGA) fabric (DSBs, BRAMs, CPUs, custom blocks)

▪Multiple tiles can be combined for integrating more complex blocks

▪ Custom blocks can be instantiated directly in Verilog and are integrated 

in Yosys, VPR/nextpnr CAD tools (Synthesis, Place&Route) (as primitive blocks)

▪ Support for dynamic partial reconfiguration

(some elements of XC6200, like wildcard configuration)

▪ Configuration through shift registers or latches (or custom cells)

▪ Support for custom cell primitives (passtransistor multiplexers)

▪ Good performance / area / power figures (about 1.5x worse than Xilinx)

(could be narrowed down through customization)

▪ Usable by FPGA users (you don‘t have to be an FPGA architect)

→ there are FPGA classics that we have/will clone

▪ ToDo: multiple clock domains, mixed-grained granularity, ...
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▪ Look-up tables (LUTs) are basically multiplexers selecting configuration latches

storing a function as a simple truth table

▪ Configuration latches are usually written through the configuration port only

▪ In distributed memory options (LUT is used as a shift register or memory file, 

table is also writeable through the user logic)

FPGA Basics – Logic  
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FPGA Configuration

▪ Do not use shift register configuration

▪ High power during configuration (thousands of bits)

▪ Configuration only valid if completely shifted in (transient short-circuits or ring-oscillators)

▪ Cannot do „real“ partial reconfiguration (static routes through reconfigurable regions)

▪ Too expensive (shift registers need flip flops, frame-based configuration can do with latches)
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0 1 0 0 00 1

▪ AMD/Intel use multiple levels of one-hot encoded routing with pass-transistors

▪ Multiple activated inputs can cause short-circuit situations

→ this is why you should blank a region before overwriting it with a new module

→ less of a problem for encoded bitstreams (not one-hot encoded)

1 1

1 0

FPGA Basics – Routing (Virtex-II style)  
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▪ Replace standard cell multiplexers with custom mux-4

Astd-cell – Ac-mux4 x N = (33.8µm2 – 17.5µm2) x 376 = 6,116µm2

Tile-based Design in FABulous 

Standard cell Custom mux-4

height width area util. area util.

CLB 219µm 219µm 47,961 81.8% 46,225 60.7%

REG 219µm 214µm 46,866 84.1% 46,655 64.3%

DSP 443µm 185µm 81,955 80.9% 81,780 56.7%

Observation:

▪ No area improvement

▪ Instead: core utilization went down

→ Congested tile routing
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In short 

improvement
expected

actual

work
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▪ The configuration bit cells may induce inferior placement of multiplexers

▪ We can remap configuration bits → requires remapping of the bitstream (trivial)

Optimization: Bitstream Remapping 
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▪ We use Google's Operations Research tools to compute the grid points 

(https://github.com/google/or-tools) 

Optimization: Bitstream Remapping 
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Optimization: Bitstream Remapping 


