
‹#›

Reconfigurable Instruction Set Extensions

using FABulous eFPGAs - when and how

dirk.koch@ziti.uni-Heidelberg.de

‹#›

Accelerator Coupling

Loosely Coupled

▪ For „large“ acceleration tasks

▪ Compress image / video

▪ Encrypt

▪ Called through drivers

▪ Hardware-centric (mostly

stand alone processing)

▪ Complex to design

CPU MEM I/OACC CPU MEM I/O

A
C

C

Tightly Coupled

▪ For „small“ acceleration tasks

▪ Parity, count-ones

▪ CRC

▪ Called in user mode

▪ Software-centric

(fine-grained function calls)

▪ Easy to design

‹#›

Reconfigurable Instruction Set Extensions

▪ Present GP CPU micro architectures leave not much headroom for optimization

▪ CPU clock is limited by power

→ trend to feature-rich instruction sets and acceleration

▪ Note that instructions have a shelf life

‹#›

Possibilities to add Custom Instructions

▪ Instructions implemented statically in hardware

▪ Instructions implemented with reconfigurable hardware (e.g., eFPGA)

▪ ISA subsetting: kick out unused instructions (usually for FPGAs only)

▪ Instructions emulated in software (may speed-up your system)

Why/How?

▪ Adding instructions can make your CPU run slower!

→ removing instructions may make your CPU faster

→ will benefit all instructions!

→ can offset the cost for software emulation (if instr. triggered seldomly)

‹#›

Possibilities to add Custom Instructions

▪ Static Instructions

▪ Reconfigurable Instructions

▪ ISA subsetting

▪ Software emulation

When what?

‹#›

Possibilities to add Custom Instructions

▪ Sliding window approach

▪ Slide a window of size t_reconfiguration over the instruction

stream (for each instruction separately)

▪ Empty spots in the filtered trace mean reconfiguration is feasible

Design Techniques for

Increasing Performance and

Resource Utilization of

Reconfigurable Soft CPUs

DDECS 2018

‹#›

Possibilities to add Custom Instructions

▪ Configuration is relatively slow → we need course scheduling granularity

▪ Perhaps at program level (custom HW Kernels)

‹#›

Reconfigurable Instruction Set Extensions

▪ Let’s replace the NEON vector unit with an FPGA fabric

of ~identical size (i.e. 2080 LUTs, 16 DSPs, 8 BRAMs)

▪ Interesting for low precision SIMD arithmetic

(128 bits allow 42 3-bit multiplications costing 1764 LUTs)

Dual ARM A9 SoC Floorplan Zynq chip with ARM SoC

soft-NEON: A study on replacing

the NEON engine of an ARM SoC

with a reconfigurable fabric

ASAP 2016

‹#›

Reconfigurable Instruction Set Extensions

▪ The logic resources are about one 32-bit softcore CPU

▪ Vector interface allows more operands and results and…

▪ …allows catching up with the faster hardened part

soft-NEON: A study on replacing

the NEON engine of an ARM SoC

with a reconfigurable fabric

ASAP 2016

‹#›

Tightly Coupled Reconfigurable Instructions

Candidates:

▪ int foo (int OP_A, OP_B);

▪ DES, AES, SHA1-3, MD5

Montgomery, CRC, …

▪ Hash functions

▪ (De)Compression

(Huffman, bit-level)

▪ Consider internal registers / register files

▪ Not bound to 2 x input, 1 x output

→ int foo1 (int OP_A, OP_B); int foo2 (int OP_C, OP_D);

→ push / pop

▪ Breakpoints, watchpoints (complex triggering), event counters

▪ Replacing defect operations???

Peer et al. ”Human Skin Colour

Clustering for Face Detection”

‹#›

Study: Soft-NEON

▪ An Interlay is reconfigurable!

▪ ISA subsetting

▪ Vector width customization

▪ Operation folding

‹#›

Custom Interlay – RISK-V Prototype

▪ As a test vehicle, we implemented a dual-core RISC-V with a shared Interlay

Cortex-A9 SoC Floorplan

NEON Area: 2080 LUTs, 16

DSPs, 16 BRAMs[2]

Dual-Core RISC-V with a PR

shared custom unit floorplan

PR Shared Area: 2082 LUTs

Slot: 694 LUTs

Dual-Ibex-Crypto-eFPGA for

cryptography

Google Shuttle - MPW4

https://github.com/nguyendao-

uom/ICESOC

‹#›

Implementation

▪ Sliding window approach

▪ Slide a window of size t_reconfiguration over the instruction

▪ Easy method: tab into the operands and multiplex in a result

→may require different number clock cycles to evaluate

‹#›

Implementation

‹#›

Reconfigurable Instruction Set Extensions

The FlexBex (Ibex with eFPGA) approach:

We use the following instruction encoding:

eFPGA[result_select]d[delay] dest, RS1, RS2 // delay: 0…15 cycles

▪ Register manipulation instruction: dest RS1 OP RS2

▪ Inline assembly:

FlexBex: A RISC-V with a

Reconfigurable

Instruction Extension

FPT 2020

‹#›

Reconfigurable Instruction Set Extensions

Alternative: configurable instruction encoding:

Idea:

▪ After configuring the CI, the OS/driver writes some registers to instruct

the CPU ho to decode/use that instruction

→ allows relocating instructions to different slots (defragmentation!)

→ allows slot-dependent latency

→ maybe key to port instructions to different process nodes

▪ Problem: we can have an infinite number of CIs (overload Encoding?)

Instruction Slot Delay slots

Encoding [NULL/trap, 1, 2, ...] [const, dynamic]

Encoding [NULL/trap, 1, 2, ...] [const, dynamic]

...

‹#›

ISA Extensions – Discussion

What we haven’t discussed:

• Stateless versus stateful instructions

→ how do we do context switches? (an OS must be able to discover this)

→ does it need to support reentrant mode? (for recursion or multiple threads)

→ Simple case: MULACC: acc acc + (RS1 x RS2)

(needs some thought how to recover state after context switch)

• Prevent Deadlocks if instruction isn’t available

→ software fallback (usually traps)

• How do we control configuration?

→ explicit per config request?

→ implicit per trap? (e.g., run n-times emulation before configuration)

‹#›

ISA Extensions – Discussion

What we haven’t discussed:

• Do we want to share instructions among cores?

→ creates resource conflict (needs arbitration)

→ creates extra latency

→ may that cause deadlocks?

→ security (e.g., Spectre-kind of attacks)?

→ much more complex but possibly better resource utilization

• Can tasks move to different cores?

→ needs moving the configuration

• Can customs instructions be ported among systems?

• Can we support iteration intervals of 1?

‹#›

ISA Extensions – Discussion

What we haven’t discussed:

• How do allocate reconfigurable resources among CIs?

→ we may have multiple Tasks

• Must be implemented efficient (or the benefit of CIs will be offset)

→ instruction cycles & code density

e.g.: if a CI saves 20 instructions each extra cycle eats 5% efficiency

→ worse in reality as we are not firing the CI all the time

→ CIs are usually doing more work but also more latency…

• In summery: the potential using reconfigurable CIs is huge but it is non-trivial

to feature this in a full-blown OS with multicore, multi tenancy, etc. support.

‹#›

Reconfigurable Instruction Set Extensions

using FABulous eFPGAs - when and how

‹#›

▪ Fully integrated open-source FPGA framework with good quality of results

(area & performance)

▪ Entirely open and free, including commercial use

(we integrated many other projects: Yosys, ABC, OpenRAM)

▪ Supports custom cells (if provided) → some tooling is on the way

▪ Supports partial reconfiguration

▪ Designed for ease of use while providing full control as needed

▪ Versatile

▪ Different flows (OpenLane →Cadance) (Yosys/nextpnr → VPR)

▪ Easy to customize, including the integration of own IP

What is FABulous offering?

‹#›

▪ Fully integrated

framework for

eFPGAs

Uses many projects:

▪ Yosys & ABC

▪ nextpnr

▪ OpenLANE

▪ VPR

▪ OpenRAM

▪ Verilator

The FABulous Framework

user Verilog

(benchmark)

Yosys and ABC

(synthesis & mapping)

json

(mapped netlist)

nextpnr

(place & route)

FASM

(routed netlist)

BitMan

(bitstream asembly)

user bitfile

fabric description

(layout & wires)
primitive library

FABulous

(synthesis & mapping)

ASIC RTL

& contraints

ASIC backend

(Cadence, OpenLANE)

ASIC

(GDS)

Fab

(TSMC180, Sky130)

ti
m

in
gc
o
s
t,

 p
e
rf

o
rm

a
n
c
e

stats (utilization, routability, etc.)physical

optimi-

sation
fabric architecture optimisation

u
s
e
r

d
e
s
ig

n
 o

p
ti

m
iz

a
ti

o
n

model
(architect. graph)

‹#›

Look-up tables (LUTs) as the basic

building block for implementing logic
1 A3, A2, A1, A0

LUT-value

AND gate

LUT-value OR

gate

0 OOOO 0 0

1 OOO1 0 1

2 OO1O 0 1

3 OO11 0 1

4 O1OO 0 1

5 O1O1 0 1

6 O11O 0 1

7 O111 0 1

8 1OOO 0 1

9 1OO1 0 1

A 1O1O 0 1

B 1O11 0 1

C 11OO 0 1

D 11O1 0 1

E 111O 0 1

F 1111 1 1

A
0

...

A
3

A
0

...

A
3

FPGA Basics – Logic

truth

table
A

0

A
1

A
2

A
3

‹#›

Routing

▪ FPGAs are made vastly of:

- (wide) Multiplexers

- Configuration Latches

▪ Customizing these tactical cells*

provides most efficiency gain

*Victor Aken’Ova. 2005. Bridging the Gap Between

Soft and Hard eFPGA Design. MSc Thesis. UBC

‹#›

LUTs help with the routing (pin swaps are for free)

‹#›

FPGA Basics – FPGA Fabric

▪ Example of an FPGA fabric composed of LUTs, switch matrices and I/O cells.
Other common primitives: memories, multipliers, transceivers, …

clock

0

1

F

0

1

F

A
0

A
1

A
2

A
3

FF

clock

0

1

F

0

1

F

A
0

A
1

A
2

A
3

FF

clock

clock

0

1

F

0

1

F

A
0

A
1

A
2

A
3

FF

clock

0

1

F

0

1

F

A
0

A
1

A
2

A
3

FF

clock

...

possible configuration

switch

matrix

LUT

switch matrix
multiplexer

enable

data_in

data_out

I/O element

I/O

pad

configuration

SRAM cell

‹#›

FPGA Basics – FPGA Fabric

‹#›

FPGA Basics – FPGA Fabric

‹#›

Switch matrix

1.LUT input muxes

2.Constant input value

3.LUT and Flop

output muxes

▪ Rest: local routing

▪ Virtex II

▪ 332 inputs

▪ 160 multiplexer

▪ Virtex V

▪ 305 inputs

▪ 172 Multiplexer

‹#›

Rough Cost Estimate

‹#›

FPGA Configuration

▪ The easiest way to implement configuration storage is using a shift register

▪ Bit-wise addressing is way too expensive!

→ frame-based reconfiguration

▪ But how do we update individual
switch matrix multiplexers?

‹#›

FPGA Configuration (as used in FABulous)

‹#›

▪ Basic tiles have same height, but type-specific width (for logic tiles, DSPs, etc.)

▪ Adjacent tiles can be fused for more complex blocks (see the DSP example) →Supertile

Basic concepts
L

A

A

AQ

L

B

B

BQ

L

C

C

CQ

L

D

D

DQ

A0

A3

B0

B3

B0

B3

B0

B3

8

16

switch

matrix

LUT

tile

Pad1

I1

Q1

O1

T1

Pad0
I0

Q0

O0

T0

Pad0
I3

Q3

O3

T3

Pad2
I2

Q2

O2

T2

8

8

I/O

tile

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

LUT_N_terminate North_terminate North_terminate

LUT_S_terminate South_terminate South_terminate

W
e
s
t_

te
rm

in
a
te

W
e
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
teL

B
L

C
L

D

L

B
L

C
L

D

LUT column DSP column IO column

A

B

C

Q

OP

'0'

8

8

16

8

8

1

2

4

16

8

16 16

stop

over

NULL tile

switch

matrix

switch

matrix

DSP top

DSP bot

carry

chain

 direct
inter
tile

links

'0'

'open'

switch

matrix

switch

matrix

‹#›

▪ I/Os belong logically to the fabric but are physically routed to the surrounding

▪ Internal wires, buses, etc. are „just“ wires at the border of the fabric

Basic concepts
L

A

A

AQ

L

B

B

BQ

L

C

C

CQ

L

D

D

DQ

A0

A3

B0

B3

B0

B3

B0

B3

8

16

switch

matrix

LUT

tile

Pad1

I1

Q1

O1

T1

Pad0
I0

Q0

O0

T0

Pad0
I3

Q3

O3

T3

Pad2
I2

Q2

O2

T2

8

8

I/O

tile

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

Se
Nb

Ne
Sb

W
e

E
b

Po

E
e

W
b

Pi

LUT_N_terminate North_terminate North_terminate

LUT_S_terminate South_terminate South_terminate

W
e
s
t_

te
rm

in
a
te

W
e
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
te

E
a
s
t_

te
rm

in
a
teL

B
L

C
L

D

L

B
L

C
L

D

LUT column DSP column IO column

A

B

C

Q

OP

'0'

8

8

16

8

8

1

2

4

16

8

16 16

stop

over

NULL tile

switch

matrix

switch

matrix

DSP top

DSP bot

carry

chain

 direct
inter
tile

links

'0'

'open'

switch

matrix

switch

matrix

‹#›

▪ 4 x register file, 2 x DSPs, 4 x LUTs (CLB), I/Os left and right,

Let‘s build a small eFPGA: Fabric Definition

LUT

LUT

LUT

LUT

DSP_bot

DSP_top

DSP

DSP_bot

DSP_top

DSP LUT

LUT

LUT

LUT

CPU

IO

CPU

IO

CPU

IO

CPU

IO

REG

(mem)

REG

(mem)

REG

(mem)

REG

(mem)

IO

Pin

IO

Pin

IO

Pin

IO

Pin

term term term

term term term term

term

‹#›

▪ 4 x register file, 2 x DSPs, 8 x LUT-tiles (CLB), I/Os left and right,

▪ A fabric is modelled as a spreadsheet (tiles are references to tile descriptors)

Let‘s build a small eFPGA: Fabric Definition

LUT

LUT

LUT

LUT

DSP_bot

DSP_top

DSP

DSP_bot

DSP_top

DSP LUT

LUT

LUT

LUT

CPU

IO

CPU

IO

CPU

IO

CPU

IO

REG

(mem)

REG

(mem)

REG

(mem)

REG

(mem)

IO

Pin

IO

Pin

IO

Pin

IO

Pin

term term term

term term term term

term

‹#›

Let‘s build a small eFPGA: Tile Definition

Se
Nb

Ne
Sb

WeEb

Po

Ee

Pi

Jump

switch

matrix

prim
itive

Ec

Wc

Nc
Sc

Wb

St
Nt

EtWt

LUT

tile

▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage

‹#›

Let‘s build a small eFPGA: Tile Definition

Se
Nb

Ne
Sb

WeEb

Po

Ee

Pi

Jump

switch

matrix

prim
itive

Ec

Wc

Nc
Sc

Wb

St
Nt

EtWt

LUT

tile

▪ Wires

▪ Primitives (basic elements)

▪ Switch matrix

▪ Configuration storage

‹#›

eFPGA Ecosystem – Tile/Wire Definitions

▪ Wires are defined by

<direction> <symbolic begin|end names> <target offset> <# wires>

▪ Jump wires for hierarchical routing (Intel/Altera and Xilinx UltraScale style)

‹#›

eFPGA Ecosystem – Switch Matrix Definition

▪ Describes the adjacency in a symbolic way

<mux_output>,<mux_input>

▪ Alternatively adjacency matrix

‹#›

The FABulous eFPGA Ecosystem

▪ FABulous eFPGA generator

▪ ASIC RTL and

constraints generation

▪Generating models for

nextpnpr/VPR flows

▪ FPGA emulation

▪ Virtex-II, Lattice clones

(patent-free!)

▪ See our FPGA 2021 paper

„FABulous: An Embedded

FPGA Framework”

‹#›

▪ Built using open tools

(Yosys, OpenLane, Verilator…)

▪ Open PDK

(Skywater 130 process)

▪ Google Shuttle (MPW5):

https://github.com/nguyendao-

uom/open_eFPGA

The first open-everything FPGA

‹#›

FABulous Chip Gallery

Sky130 with CLBs, DSPs,

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel

‹#›

FABulous Chip Gallery

Sky130 with CLBs, DSPs,

RegFiles, BRAMs

Google Shuttle - MPW-2

(can implement RISC-V)
https://github.com/nguyendao-uom/eFPGA_v3_caravel

‹#›

FABulous Chip Gallery

Dual-Ibex-Crypto-eFPGA

Google Shuttle - MPW-4

(custom instructions,

T-shaped fabric)
https://github.com/nguyendao-uom/ICESOC

‹#›

FABulous Chip Gallery

Open ReRAM FPGA test chip

▪ Sky130, Google Shuttle

MPW4https://github.com/nguyendao-uom/rram_testchip

▪ Just enough logic to send

„Hello World“ to a UART

▪ Different configuration modes

Posible advantages of ReRAM FPGAs

▪ Security (user circuit is encoded in resitsive states)

▪ Reliability (ReRAM is radiation hard)

▪ Probably density

▪ Instantanous on

▪ CMOS friendly

‹#›

FABulous versus OpenFPGA (on Sky130)

▪ FABulous and OpenFPGA have

a Google Shuttle2 submission

▪ ~ same physical impl. problem

▪ OpenFPGA CLBs are 17% bigger

▪ New optimizations gave us further 21.7% in density on the same netlist!

~1200 MUX2

‹#›

The FABulous eFPGA Framework – Wrap-up

▪ Heterogeneous (FPGA) fabric (DSBs, BRAMs, CPUs, custom blocks)

▪Multiple tiles can be combined for integrating more complex blocks

▪ Custom blocks can be instantiated directly in Verilog and are integrated

in Yosys, VPR/nextpnr CAD tools (Synthesis, Place&Route) (as primitive blocks)

▪ Support for dynamic partial reconfiguration

(some elements of XC6200, like wildcard configuration)

▪ Configuration through shift registers or latches (or custom cells)

▪ Support for custom cell primitives (passtransistor multiplexers)

▪ Good performance / area / power figures (about 1.5x worse than Xilinx)

(could be narrowed down through customization)

▪ Usable by FPGA users (you don‘t have to be an FPGA architect)

→ there are FPGA classics that we have/will clone

▪ ToDo: multiple clock domains, mixed-grained granularity, ...

‹#›

People:

Andrew Attwood a.j.attwood@ljmu.ac.uk

Asma Mohsin asma.mohsin@stud.uni-heidelberg.de

Bea Healy tabitha.healy@student.manchester.ac.uk

Dirk Koch dirk.koch@manchester.ac.uk

Gennadiy Knies gennadiy.knis@stud.uni-heidelberg.de

Jakob Ternes jakob.ternes@stud.uni-heidelberg.de

Jing Li jing.li@manchester.ac.uk

Jonas Künstler jonas.kuenstler@stud.uni-heidelberg.de

Kelvin Chung king.chung@student.manchester.ac.uk

Marcel Jung marcel.jung@stud.uni-heidelberg.de

Myrtle Shah gatecat@ds0.me

Nguyen Dao nguyen.dao@manchester.ac.uk

See our projects under: https://github.com/FPGA-Research-Manchester

This work is kindly supported by the UK Engineering and Physical Sciences Research Council (EPSRC)

under grant EP/R024642/1 and Carl-Zeiss-Stiftung

FABulous Contributors

‹#›

▪ Look-up tables (LUTs) are basically multiplexers selecting configuration latches

storing a function as a simple truth table

▪ Configuration latches are usually written through the configuration port only

▪ In distributed memory options (LUT is used as a shift register or memory file,

table is also writeable through the user logic)

FPGA Basics – Logic

‹#›

FPGA Configuration

▪ Do not use shift register configuration

▪ High power during configuration (thousands of bits)

▪ Configuration only valid if completely shifted in (transient short-circuits or ring-oscillators)

▪ Cannot do „real“ partial reconfiguration (static routes through reconfigurable regions)

▪ Too expensive (shift registers need flip flops, frame-based configuration can do with latches)

‹#›

0 1 0 0 00 1

▪ AMD/Intel use multiple levels of one-hot encoded routing with pass-transistors

▪ Multiple activated inputs can cause short-circuit situations

→ this is why you should blank a region before overwriting it with a new module

→ less of a problem for encoded bitstreams (not one-hot encoded)

1 1

1 0

FPGA Basics – Routing (Virtex-II style)

‹#›

▪ Replace standard cell multiplexers with custom mux-4

Astd-cell – Ac-mux4 x N = (33.8µm2 – 17.5µm2) x 376 = 6,116µm2

Tile-based Design in FABulous

Standard cell Custom mux-4

height width area util. area util.

CLB 219µm 219µm 47,961 81.8% 46,225 60.7%

REG 219µm 214µm 46,866 84.1% 46,655 64.3%

DSP 443µm 185µm 81,955 80.9% 81,780 56.7%

Observation:

▪ No area improvement

▪ Instead: core utilization went down

→ Congested tile routing

‹#›

In short

improvement
expected

actual

work

‹#›

▪ The configuration bit cells may induce inferior placement of multiplexers

▪ We can remap configuration bits → requires remapping of the bitstream (trivial)

Optimization: Bitstream Remapping

c
0
=0

0

1

0

1

c
1
=1M0

M1
c

in
c

out

c
1
=0 0

1
M0

0

1
M1

c
0
=1

c
in

c
out

‹#›

▪ We use Google's Operations Research tools to compute the grid points

(https://github.com/google/or-tools)

Optimization: Bitstream Remapping

‹#›

Optimization: Bitstream Remapping

