

Task 1 – Start FABulous and build a first fabric

Open a shell and change into the directory: ~/summer_school/FABulous

Start FABulous with (the -h switch shows you the help page)

 python3 FABulous.py -h

This will throw an error as you must define the FAB_ROOT environment variable:

export FAB_ROOT=$PWD

 Being able to set a different root was considered to be useful in case we play with different versions…

Restart python3 FABulous.py -h

We first generate a new template project using:

 python3 FABulous.py -c Ignite2024_demo

This creates a directory structure under ./Ignite2024/. Go into the Ignite2024 root and open fabric.csv

in a spreadsheet program and explore the file!

Resize the provided fabric by removing the last two CLB (Configurable Logic Block) columns!

They are named LUT4AB. Be careful not to interfere with other columns in the file. Also, when you

shift the RAM_IO to the left, don’t forget the termination tiles.

You could also add or remove rows, but that must be done in units of two CLB rows due to the

DSP supertile which is two basic tiles (our CLBs) in height. Moreover, that changes the

interface of the fabric as we use connections at the left and right border of the fabric in the

template. Note it is possible to replace the north and south termination tiles with I/Os.

Save the fabric.csv file and then start our project with:

 python3 FABulous.py Ignite2024

Follow the steps displayed inside FABulous (starting with load_fabric)

Note to play with <TAB> when entering commands, you can also fetch previous commands

using the <UP> key.

When done with run_FABulous_fabric (generates the fabric RTL), gen_geometry (generates the

model for the FABulator graphical FPGA Editor), and run_FABulous_bitstream, (compiles and

implements a simple counter), you can open the FABulator (start the icon on your desktop). Inside,

run File → Open Ignite2024/eFPGA_geometry.csv. After this, you can download the counter test

example design with File → Open FASM. FASM (FPGA Assembler) is a human readable textual

bitstream format (check it out).

The FASM that we generated is in Ignite2024/user_design.

Congratulation, you just built you first FPGA!

(we do the GDS part later)

This was quite automated and if you want to explore what happened under the hood, follow

the steps in: https://fabulous.readthedocs.io/en/latest/Building%20fabric.html

For that check what is added in rt_demo/tiles/LUT4AB after each step.

https://fabulous.readthedocs.io/en/latest/Building%20fabric.html

Task 2 – Customizing a tile

Open a file browser and change into the RegFile directory under Ignite2024/Tiles/

Open RegFile_32x4.v which contains the BEL (Basic Element) and study how the two configuration

bits ConfigBits are used. Note the commented lines 17 and 18 that specify symbolic names for the

configuration bits. You may also check the LUT4AB tile as another example.

The tile implements distributed memory in the form of a small register file primitive that is 4-

bit wide and 32 entries deep. The primitive (also called BEL) has 1 write and two read ports.

The two read ports are not supported in distributed memory primitives of Xilinx or Altera

FPGAs (they would need two distributed memory LUTs per bit of, let’s say, a RISC-V Register

file while we would need just 8 of our RegFile primitives for this case).

Add now the possibility that, depending on a third parameter (configuration bit), we will return a 0 if

we read from address 0. This feature would save some LUTs in case we want to implement a RISC-V

CPU on our FPGA because register 0 is hardwired to 0 in RISC-V.

We could make a copy of the RegFile (or LUT4AB tile) to derive a new custom tile. This would

also require us to derive a new custom tile descriptor in the fabric.csv file. If we stick to the

same BEL interface, that is all it takes to support a custom tile (for instance something tailored

to ML inference). Otherwise, the interfacing takes a few manual steps that are already

automated and that will be released soon.

Homework

Write a wrapper for your custom primitive and instantiate that in sequential_16bit_en.v

(located in the /User_design sub folder).

You can compile that inside FABulous with run_FABulous_bitstream.

An example that instantiates the DSP primitive is provided in:

https://github.com/gatecat/fabulous-mpw2-bringup/blob/main/sim/test_design/vga_bram_mul.v

Check lines 120-140

https://github.com/gatecat/fabulous-mpw2-

bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L12

0-L140

and line 61

https://github.com/gatecat/fabulous-mpw2-

bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L61

https://www.dropbox.com/scl/fi/hteaip8it9s4fitu6jlkd/FABulous_RT_Tutorial.pdf?rlkey=p9ikd13xhflsj

w031kfj8hjnq&st=p5kia8zz&dl=0

https://acesse.dev/pJK6U

https://github.com/gatecat/fabulous-mpw2-bringup/blob/main/sim/test_design/vga_bram_mul.v
https://github.com/gatecat/fabulous-mpw2-bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L120-L140
https://github.com/gatecat/fabulous-mpw2-bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L120-L140
https://github.com/gatecat/fabulous-mpw2-bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L120-L140
https://github.com/gatecat/fabulous-mpw2-bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L61
https://github.com/gatecat/fabulous-mpw2-bringup/blob/34bcb9d3bb253eb7651532fac6a44f3a3e31a732/sim/test_design/vga_bram_mul.v#L61
https://www.dropbox.com/scl/fi/hteaip8it9s4fitu6jlkd/FABulous_RT_Tutorial.pdf?rlkey=p9ikd13xhflsjw031kfj8hjnq&st=p5kia8zz&dl=0
https://www.dropbox.com/scl/fi/hteaip8it9s4fitu6jlkd/FABulous_RT_Tutorial.pdf?rlkey=p9ikd13xhflsjw031kfj8hjnq&st=p5kia8zz&dl=0

