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Introduction
Any algorithm requires a computational platform to run. Some platforms, however, have limited size,
power, or energy, especially if they are battery-operated. Examples include cell phones, unmanned
vehicles like flying drones, or tiny sensors. Yet, they need to process information to make inferences about
a signal or to compute a trajectory, which is done by running algorithms that often require a considerable
amount of computation. Our goal is to investigate ways to reduce the total amount of power/energy/size of
an algorithm by considering the full computational stack: from the task itself, to its algorithmic
implementation, basic linear algebra operations, software, and hardware.

Figure 1: WP2.1 Overview.

See Fig. 1 for a visual illustration. Indeed, in each of these layers, there exist techniques to reduce
power/energy/size, for instance, by reducing voltage or frequency, selecting a lower precision for
representing numbers, or using approximate algorithms in linear algebra operations. However, such
techniques are almost always considered in isolation without taking into account the impact on the
downstream task. In this WP, we took a holistic view on this set of approximations and developed
strategies to select the most effective approximations without undermining the task at hand. We thus made
several experimental and theoretical contributions to the field.

Approximate Model Predictive Control[5]
The figures below show both the orientation of a NASA Calipso Satellite and the control signal in a
real-time FPGA-in-the-loop (ZCU106) simulator.
Seven states are considered here: Roll, Pitch, Yaw, ω1, ω2, ω3, ωw , where Roll, Pitch, Yaw describe the
rotating angles of the body frame relative to the orbit frame, and ω1, ω2, ω3 are the corresponding angular
velocities. ωw is the angular velocity along the spin axis. The thrusters are controlled by three input
voltages, τ1, τ2, τ3, and the reaction wheel is controlled by input voltage τw accordingly.

Figure 2: FPGA-in-the-loop simulation of MPC with T = 10; W = 64).

Figure 3: FPGA-in-the-loop simulation of MPC with T = 10; W = 28).

The thrusters are controlled by three input voltages, τ1, τ2, τ3, and the reaction wheel is controlled by
input voltage τw accordingly
The following table summarises FPGA resource utilisation, power, and latency of hardware-accelerated
MPC using different arbitrary precisions and control horizons.

Table 1: Power report from post-implementation

T=1 T=5 T=10
Precision FP-32 FP-12 FXP-24 UP-12 FP-32 FP-16 FXP-28 UP-14 FP-32 FP-14 FXP-32 UP-14

LUT (×103) 3.31 2.99 1.21 19.4 3.17 2.16 1.24 10.9 4.01 2.42 1.46 10.6
DSP48E1 30 0 11 12 20 6 10 4 20 6 16 4

BRAM 0 0 0 0 2 2 4 0 5 5 5 8
Clock (MHz) 482 465 443 393 434 401 403 382 370 384 379 382
Power (mW) 273 199 68 248 219 220 110 152 250 254 113 148

Bandwidth 100% 14.06% 56.25% 14.06% 100% 25% 76.56% 19.14% 100% 19.14% 100% 19.14%

The results show up to 60% logic cost reduction, 80% memory bandwidth saving, and 70% power
reduction.

A Probabilistic Convergence Verification Framework For Hardware-based Solvers[2, 1]
Given computational errors with bounds known a priori, the proposed framework establishes probabilistic
guarantees on the convergence of the algorithm up to a suboptimal noise ball. The radius of the noise ball
(or approximation width) is parametrized by a probability parameter. Such a noise ball can be interpreted
in a frequentist sense as the proportion of tests that fail during verification. In a Bayesian interpretation, it
is equivalent to the smallest probability under which some test rule is expected to be successful in each
verification session.

Figure 4: Approximate PGD convergence upper bounds (with gradient error bound = 2.2× 101; proximal error bound = 101)

.

Design and Analysis of A Hardware-Friendly Algorithm (DFGPGD)[3]
The general form of Dual-Feedback Generalized Proximal Gradient Descent (DFGPGD) algorithm can be
written as

uk+1 = Axk + Bzk − c + vk , (1a)
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vk+1 = vk + (Axk+1 + Bzk+1 − c), (1d)

In this experiment, we used 5 iterations in both ADMM and DFGPGD solvers for comparison, this is
referred to as trip count in Vivado HLS timing reports. The iteration latency is reduced from 1401 cycles in
ADMM to only 1052 cycles using DFGPGD, which is 23.39% reduction in overall latency (i.e., from 7329
cycles to 5615 cycles as shown in Table 2 below).

Table 2: Timing report
Latency (cycles) CP post-synth. (ns) CP post-impl. (ns)

ADMM 7329 4.305 6.372
DFGPGD 5615 3.195 4.097

Diff. -23.39% -25.78% -35.70%

Table 3: Resource utilization report from post-implementation

CLB DSP48E FF LUT
ADMM 339 16 1577 1822

DFGPGD 204 10 879 1120
Diff. -39.82% -37.50% -44.26% -38.53%

Table 4: Power report from post-implementation

Total Power (W) Dynamic Power (W)
ADMM 0.636 0.044

DFGPGD 0.611 0.019
Diff. -3.93% -56.82%

Synthesisable Approximate Linear Algebra Library (SXLAL)[4]
We developed a linear algebra library that supports various arithmetic types and precisions. Linear algebra
operations are performed with various precisions. In conjunction with the linear algebra computations, the
library also includes general DSP algorithms, e.g., the fast Fourier transform (FFT), discrete cosine
transform (DCT), and other transforms.

Figure 5: SXLAL headers make use of datatypes from external arithmetic libraries and is used for linear algebra operations and
DSP algorithms.
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