nextpnr
Open sAurce FPGA place &

route

FPGA Ignite 2023

Introduction

Rowan Goemans

Mail: goemansrowan@gmail.com

Master student @Radboud university in Nijmegen, The Netherlands
Thesis: timing constraint in nextpnr @ZITI under Myrtle “gatecat” Shah

Software background

mailto:goemansrowan@gmail.com

\ Introduction

- lwork at BDT Holland as an capability engineer:

- Service partner for large OEM (HP, IBM, ...)

= My responsibility is to figure out how to repair/validate the equipment they send us

. LUMIGUIDE

SMART MOBILITY SOLUTIONS FOR SMART CITIES

- lalsowork at Lumi Guide as R&D engineer
- Lumi Guide build bicycle and car detection system for parking garages

- | work on new technologies and cost optimization of our current systems

Lumi Guide

Lumi Guide

Lumi Guide

Aantal vrije plaatsen

9 204 ¥ 50
& 115 o2 7

Hardware design @ Lumi Guide

- Embedded Software background and learned FPGA as part of my job @ Lumi Guide
- First project implement a LED-matrix sign driver

- Main software implementation language used is Haskell

- Use Haskell to write LED-matrix sign driver

- Clash (https://github.com/clash-lang/clash-compiler) can synthesize Haskell to Verilog/VHDL.

- NotHLS

- Possible future work: Run Al inference on FPGA

https://github.com/clash-lang/clash-compiler

Hardware design @ Lumi Guide

First FPGA version sign driver used DEO-Nano-SoC + Quartus

Of all the things | had to learn when Quartus was by far the most problematic
Constant issues surrounding Cl, autogenerating interfaces, deprecated IP
Enter Yosys + nextpnr

Month long exploration of using Yosys + nextpnr and a “cheap” LED-matrix FPGA board from
china

Hardware design @ Lumi Guide

Cost: ~10-15% per board

Hardware design @ Lumi Guide

- PoC was very successful
- Our V2 systemis now build using the fully open source yosys + nextpnr flow
- Goodbye quartus!!
- Many advantages:
- Time to bitstream is much lower

- Ability to fix bugs or add features, (Ex: Yosys plugin that packs FFs into BRAM)

- Actual useful support

Hardware design @ Lumi Guide

- But nextpnr is missing one crucial feature | would really like to have: timing constraints

- Master thesis topic under Dirk Koch & nextpnr maintainer Myrtle Shah

Short history of open source FPGA flow

- 2012: Start of Yosys synthesis tool as Claire’s thesis work

- 2015: First release of icestorm for ice40, simple full flow with arachne-pnr
- 2017: Project X-Ray begins analysing xilinx 7-series bitstreams

- 2018: Development on nextpnr starts, project trellis for the ecp5

- 2019: nextpnr and trellis scale to significantly larger designs

- 2020: experimental X-Ray based Xilinx support in nextpnr

- 2021: Initial release of Project Mistral for the Intel Cyclone V
and associated nextpnr support

- 2023: Full flow demonstrated for a fully open FPGA on an open process (FABulous on sky130)

nextpnr

- Open source multi-architecture FPGA place & route aimed at real world FPGAs
- Support for a range of commercial FPGAs

- Supported commercially by YosysHQ GmbH in Vienna

nextpnr

esigns on Lattice ECP5 have included 64-bit Linux-capable
RISC-V SoCs and an open source SNES game console replica

©, 0x12c000 bytes, mapped to Ox(ptrual)
t 0.5027641 simple—framebuffer o3
0x480x32, 1inelength=2560

fer: forma .

3 0.6622051 Console: switching to colour frame buffer device 80x30 o
r ©.8789711 simple-framebuffer f0000000.framncbuffer: fbo: simplefb regxstered
v

r 1.3593461 Unpacking initramfs...

3 3.0783081 Initramfs unpacking failed: broken padding

r 3.1931961 workingset: timestamp_bits=30 max_order=18 bucket_order=0

[3.6416221 Block layer SCSI generic (bsg) driver version ©.4 loaded (major 2
54

. 3.8205901 io scheduler mq-deadline registered

3 3.9126201 io scheduler kyber registered H
3 5.9153091 ledtrig—cpu: registered to indicate activity o 3
L 6.0367081 random: get_random_bytes called from init_oops_ id'om-:/euso with
crag_init=6

3 6.2458551 Freeing unused kernel memory: 120K

r 6.3386631 This architecture does not have kernel memary protection.

r 6.4349771 Run ~init as init process

mount: mounting tmpfs on ~sdeus/shm failed: Invalid argumewnt
mount: mounting tmpfs on ~tmp failed: Invalid argument
mount: mounting tmpfs on ~run failed: Invalid argument
Starting syslogd: OK

Starting klogd: DK

nextpnr

FPGA Architecture

- An FPGA or Field-Programmable Gate Array is a special IC that contains
configurable logic and connections

- Configuring the logic and connections allow implementation of arbitrary
digital logic

- Basic structure is a switch matrix which with Programmable
Interconnect Points (PIP) + Configurable Logic Blocks (CLBs)

- Programmable Interconnect Points can route signals based on the
configuration

- The CLBs are used to implementation combinational and sequential logic

- Together configuring PIPs and CLBs allows the implementation of
arbitrary digital logic.

FPCGA Architectures

Interconnect

‘Configurable
" Logic Block

-~ Matrix

_.1/0Bank

Source: https://allaboutfpga.com/fpga-architecture/

\ FPGA Architectures

Source: https://www.fpgakey.com/

FPGA Architecture
- The CLB + PIP are the bread and butter of FPGA
- Every CLB can be slightly different between FPGA models
- LUT4,LUT5 or even LUT6
- Multiple LUTs and registers per CLB

- Specialized in/outputs for carry chain support

- And many more

FPCGA Architecture

- Oftenused functionality are included as special tiles for efficiency
reasons

- blockRAM for memories

- Multipliers/Adders

- Floating point cores

- Sometimes even Hard processors are embedded
- Specialized 1/O: SerDes, DDR etc

- Inthe hackathon on friday we will extend an FPGA with our own
custom: tile.

nextpnr - Overview

- Timingdriven throughout using reverse engineered timings
- Analytical placer

- Custom scripting via Python bindings

- Customisable place and route algorithms

- Relatively low footprint and dependency requirements

- (Optional) Qt based GUI

nextpnr - Overview

- Support for various vendors and models
- Lattice Ice40, ECP5, Nexus, MachXO2(Experimental)
- Gowin LittleBe
- Intel: Cyclone V (Experimental)

- Architected to allow rapid prototyping of novel architectures using the
Viaduct and Himbachel frameworks

- Canscale to about 1M LUTs

nextpnr - Overview

Timing Analysis

<

Red boxes are architecture specific

\ nextpnr - Terminology

. Bel: Basic Element, the functional blocks of an FPGA such as
LUTs, FFs, 10 cells, blockrams, etc. Up to one cell may be placed
at each Bel

. Wire: a fixed connection (“piece of metal”) inside the FPGA
between Pips and/or Bel pins.

. Pip: Programmable Interconnect Point

. See docs/fag.md, docs/archapi.md, and
docs/coding.md in the nextpnr repo for
further discussion.

https://github.com/YosysHQ/nextpnr/blob/master/docs/faq.md
https://github.com/YosysHQ/nextpnr/blob/master/docs/archapi.md
https://github.com/YosysHQ/nextpnr/blob/master/docs/coding.md

\ nextpnr - Placement

- Current primary placement pass is analytical
placement (based roughly on the HeAP paper)

- Repeat until converged:

solving equations to compute optimal wirelength
placement per some wirelength proxy

spreading cells so they don’t overlap
legalising cells so validity rules are met

adding an increasing weight arc from cells to their
legalised postions

nextpnr - Placement

- Simple demonstration: 2 fixed cells and 2 movable cellsiand j

-0~

Fixed at x = 1 Fixed atx =3

- Create equation for quadratic wirelength to be minimized

Graphics taken from:: ANALYTICAL PLACEMENT FOR HETEROGENEQUS FPGAS by Marcel Gort and Jason H.
Anderson

nextpnr - Placement

Rewrite to system of linear equalities and solve

5))= b

Solution: X. = 5/3, X; = 7/3,

Solve for both X and Y locations

Outsource to Eigen a industrial strength off the-shelf linear algebra solution

Graphics taken from:: ANALYTICAL PLACEMENT FOR HETEROGENEQOUS FPGAS by Marcel Gort and Jason H.
Anderson

nextpnr - Placement

- Prior algorithm in nextpnr is augmented with weight per wire length called
Bound2bound

- Weight: (1 + criticality) / (fanout * [x. - xJ.I)
Criticality:
- value between 0.0 and 1.0 given by timing engine
- 0.0 =don’t care, 1.0 critical path of the circuit

- Result: Very tight, but also very illegal placement

N\

nextpnr - Placement

n

3

Iteratively spread to legal locations
spread to grid locations
add arc to spread position

Repeat with increasing weight until a legal
placement has been found

Afterwards refinement steps take place
(Simulated Annealing, swapping cells)

nextpnr - Router

- Route the wires of the fabric using the PIP

- Minimize wire lengths to optimize circuit performance

- Mainrouter (routerl) bespoke implementation by Claire Wolf of Yosys fame
- Unfortunately | do not know in detail how it works.

- Main takeaway: Uses Criticality from timing engine as well to guide routing

nextpnr - Timing engine

Informs the placer and router how “good” their results are

Criticality is the central number
- 0.0=don’tcare

- 1.0critical path of the circuit

Higher quality place and route results means your circuit can run faster

After place and route it prints out fmax figures per clock domain

nextpnr - Timing engine

Generic for every architecture
- Informed by fabric and cell timings

- Ex: ECP5 multiplier timing
(http://yosyshg.net/pritrellis-db/ECP5/timing/cell timing 6.html)

- Analyses all combinational paths starting or ending in a FF

MULT18X18D:REGS=NONE

Propagation Delays

Low-High Transition (ps) High-Low Transition (ps)
Min Typ Max Min Typ Max
A 3418 3927 3418 3927
B 3418 3927 3418 3927
SIGNEDA 3234 3728 3234 3728
SIGNEDB 3234 3728 3234 3728

From Port To Port

http://yosyshq.net/prjtrellis-db/ECP5/timing/cell_timing_6.html

nextpnr - Timing engine Terminology

- Setup time: The time a signals needs to be stable before the clock edge

- Hold time: The time a signal needs to be stable after the clock edge

Limited/No support for hold time checks in nextpnr at this time
- Required time: The time before which a signal must arrive
- Arrival time: The actual time the signal will arrive

- slack: required - arrival time

nextpnr - Timing engine flow

- Topologically sort netlist
- Walk forward through all ports and assign arrival times:

- Out port: Propagate delay through net and add routing delay to all
users

- Inport: Propagate delay through combinational outputs and add
combinational delay

- Initialize the setup/hold as the required time for all FFs
- Walk backwards through all ports:

- Out port: Propagate delay through combinational inputs subtracting
combinational delay

- Inport: Propagate delay back through all drivers subtracting routing
delay

nextpnr - Timing engine

Calculate slack based on required and arrival times
Calculate criticalities for usage in placer and router
Optionally report fmax

void TimingAnalyser::run(bool update_route_delays)
{

reset_times();

if (update_route_delays)

get_route_delays();

walk_forward() ;

walk_backward() ;

compute_slack();

compute_criticality();

nextpnr - Timing engine worked example

- N First let’s annotate the routing delays
and combinational delays and also the
time

nextpnr - Timing engine worked example

- N First let’s annotate the routing delays
and combinational delays and also the
time
- Topological sort:

nextpnr - Timing engine worked example

First let's annotate the routing delays

and combinational delays and also the
time

- Topological sort: FFO-> FF1->CO->

Cl->FF2

nextpnr - Timing engine worked example

First let's annotate the routing delays
and combinational delays and also the
time

- Topological sort: FFO-> FF1->CO->
Cl->FF2

- Delays

- FFO->CO->C1->FF2:12ns

- FF1->CO->C1->FF2:17/ns

- FF1->C1->FF2:5ns

nextpnr - Timing engine worked example

First let's annotate the routing delays
and combinational delays and also the
time
- Topological sort: FFO-> FF1->CO->
Cl->FF2
- Delays
- FFO->CO->C1->FF2:12ns
- FF1->CO->C1->FF2:17/ns
- FF1->C1->FF2:5ns
- Setuptimeis 1ns
- FFO->CO->C1->FF2:13ns
- FF1->CO->C1->FF2:18ns
- FF1->C1->FF2:6ns

nextpnr - Timing engine worked example

First let's annotate the routing delays
and combinational delays and also the
time

- Topological sort: FFO-> FF1->CO->
Cl->FF2

- Delays

- FFO->CO->C1->FF2:12ns

- FF1->CO->C1->FF2:17/ns

- FF1->C1->FF2:5ns

- Slowest pathis 18ns that means

- Setup time is 1ns this circuit has an fmax of 55.5
- FFO->CO->C1->FF2:13ns Mhz

- FF1->CO->C1->FF2:18ns

- FF1->C1->FF2:6ns

nextpnr - Timing constraints

- Topic of my master thesis
- Supported: Clock frequency constraints

Even automatic derivation of PLL generated clocks if
input is known

- Not supported:

False path: ignore a path completely

Min/max delay: Set maximum/minimum allowed delay
10 delay: Set input/output delay at the edge of the
FPGA

Multicycle paths: Allow a single path to take multiple
clock cycles

nextpnr - Timing constraints

- Timing constraints essential for:

High performance interface between FPGA and the world
Clock domain crossings (CDC)
Partial reconfiguration

- Asynchronous FIFO example

Domains A and B have an unknown relationship

Dual port blockRAM, sync write port in domain A, sync read port in
domain B

Gray code write pointer in domain A, gray code read pointer in domain
B

FIFO full/empty computation requires both write/read pointer
Synchronize write pointer to domain B using FFs synchronizer chain
Synchronize read pointer to domain A using FFs synchronizer chain

\ nextpnr - Timing constraints

Are we happy?

\ nextpnr - Timing constraints

nextpnr - Timing constraints

- But we have used gray pointers AND nicely synchronized them?

- Yes! But nextpnr knows nothing about the domains so it cannot decide on a
criticality or an fmax figure for this path

- This means it’s possible for the individual bits of the gray pointers to have
vastly different delays.

- Breaks assumption that max one bit changes each cycle

- Meaning the FF synchronizer chain is no longer a valid word synchronizer

nextpnr - Timing constraints

Max delay constraint to the rescue:

- Constrain path of output of FF in A to input of FF in B with the smaller clock
period of both domains, and vice versa.
- set_max_delay -from [get_cell src_gray_ff*] -to [get_port dst_graysync_ff*]
(lexpr min ($src_clk_period, $dest_clk_period)])
- from: Where to start the max delay constraint from. These are the
registers named “src_gray_ff*” The *is a wildcard
- To: Where to max_delay constraint ends. These are the first FFs in the
synchronizer chain: “dst_graysync_ff*”
- And finally we say we set the max delay to the minimum of both clock
periods.

nextpnr - Timing constraints

- Thisis still future work and the topic of my Master Thesis
- Will require re-engineering of the timing analyser

- false_paths/max_delay: We can piggy-back off criticality
- min_delay may require an additional pass after routing.

- io_delay will require teaching nextpnr about delay elements which may
need to be dynamically inserted

- multicycle_path will work with criticality as well

\ nextpnr

Yosys + nextpnr
demo

\ nextpnr

Questions?

