
 nextpnr
Open source FPGA place &
route

FPGA Ignite 2023

Introduction

Rowan Goemans

Mail: goemansrowan@gmail.com

Master student @Radboud university in Nijmegen, The Netherlands

Thesis: timing constraint in nextpnr @ZITI under Myrtle “gatecat” Shah

Software background

mailto:goemansrowan@gmail.com

Introduction

- I work at BDT Holland as an capability engineer:

- Service partner for large OEM (HP, IBM, …)

- My responsibility is to figure out how to repair/validate the equipment they send us

- I also work at Lumi Guide as R&D engineer

- Lumi Guide build bicycle and car detection system for parking garages

- I work on new technologies and cost optimization of our current systems

Lumi Guide

Lumi Guide

Lumi Guide

Hardware design @ Lumi Guide

- Embedded Software background and learned FPGA as part of my job @ Lumi Guide

- First project implement a LED-matrix sign driver

- Main software implementation language used is Haskell

- Use Haskell to write LED-matrix sign driver

- Clash (https://github.com/clash-lang/clash-compiler) can synthesize Haskell to Verilog/VHDL.

- Not HLS

- Possible future work: Run AI inference on FPGA

https://github.com/clash-lang/clash-compiler

Hardware design @ Lumi Guide

- First FPGA version sign driver used DE0-Nano-SoC + Quartus

- Of all the things I had to learn when Quartus was by far the most problematic

- Constant issues surrounding CI, autogenerating interfaces, deprecated IP

- Enter Yosys + nextpnr

- Month long exploration of using Yosys + nextpnr and a “cheap” LED-matrix FPGA board from

china

Hardware design @ Lumi Guide

Cost: ~10-15$ per board

Hardware design @ Lumi Guide

- PoC was very successful

- Our V2 system is now build using the fully open source yosys + nextpnr flow

- Goodbye quartus!!

- Many advantages:

- Time to bitstream is much lower

- Ability to fix bugs or add features, (Ex: Yosys plugin that packs FFs into BRAM)

- Actual useful support

Hardware design @ Lumi Guide

- But nextpnr is missing one crucial feature I would really like to have: timing constraints

- Master thesis topic under Dirk Koch & nextpnr maintainer Myrtle Shah

Short history of open source FPGA flow

- 2012: Start of Yosys synthesis tool as Claire’s thesis work

- 2015: First release of icestorm for ice40, simple full flow with arachne-pnr

- 2017: Project X-Ray begins analysing xilinx 7-series bitstreams

- 2018: Development on nextpnr starts, project trellis for the ecp5

- 2019: nextpnr and trellis scale to significantly larger designs

- 2020: experimental X-Ray based Xilinx support in nextpnr

- 2021: Initial release of Project Mistral for the Intel Cyclone V

and associated nextpnr support

- 2023: Full flow demonstrated for a fully open FPGA on an open process (FABulous on sky130)

nextpnr

- Open source multi-architecture FPGA place & route aimed at real world FPGAs

- Support for a range of commercial FPGAs

- Supported commercially by YosysHQ GmbH in Vienna

nextpnr

Designs on Lattice ECP5 have included 64-bit Linux-capable
RISC-V SoCs and an open source SNES game console replica

nextpnr

FPGA Architecture
- An FPGA or Field-Programmable Gate Array is a special IC that contains

configurable logic and connections

- Configuring the logic and connections allow implementation of arbitrary

digital logic

- Basic structure is a switch matrix which with Programmable

Interconnect Points (PIP) + Configurable Logic Blocks (CLBs)

- Programmable Interconnect Points can route signals based on the

configuration

- The CLBs are used to implementation combinational and sequential logic

- Together configuring PIPs and CLBs allows the implementation of

arbitrary digital logic.

FPGA Architectures

Source: https://allaboutfpga.com/fpga-architecture/

FPGA Architectures

Source: https://www.fpgakey.com/

- The CLB + PIP are the bread and butter of FPGA

- Every CLB can be slightly different between FPGA models

- LUT4, LUT5 or even LUT6

- Multiple LUTs and registers per CLB

- Specialized in/outputs for carry chain support

- And many more

FPGA Architecture

FPGA Architecture
- Often used functionality are included as special tiles for efficiency

reasons

- blockRAM for memories

- Multipliers/Adders

- Floating point cores

- Sometimes even Hard processors are embedded

- Specialized I/O: SerDes, DDR etc

- In the hackathon on friday we will extend an FPGA with our own

custom tile.

- Timing driven throughout using reverse engineered timings

- Analytical placer

- Custom scripting via Python bindings

- Customisable place and route algorithms

- Relatively low footprint and dependency requirements

- (Optional) Qt based GUI

nextpnr - Overview

- Support for various vendors and models

- Lattice Ice40, ECP5, Nexus, MachXO2(Experimental)

- Gowin LittleBe

- Intel: Cyclone V (Experimental)

- Architected to allow rapid prototyping of novel architectures using the

Viaduct and Himbächel frameworks

- Can scale to about 1M LUTs

nextpnr - Overview

nextpnr - Overview

Red boxes are architecture specific

nextpnr - Terminology

● Bel: Basic Element, the functional blocks of an FPGA such as
LUTs, FFs, IO cells, blockrams, etc. Up to one cell may be placed
at each Bel

● Wire: a fixed connection (“piece of metal”) inside the FPGA
between Pips and/or Bel pins.

● Pip: Programmable Interconnect Point

● See docs/faq.md, docs/archapi.md, and
 docs/coding.md in the nextpnr repo for
further discussion.

https://github.com/YosysHQ/nextpnr/blob/master/docs/faq.md
https://github.com/YosysHQ/nextpnr/blob/master/docs/archapi.md
https://github.com/YosysHQ/nextpnr/blob/master/docs/coding.md

nextpnr - Placement

- Current primary placement pass is analytical
placement (based roughly on the HeAP paper)

- Repeat until converged:

- solving equations to compute optimal wirelength
placement per some wirelength proxy

- spreading cells so they don’t overlap

- legalising cells so validity rules are met

- adding an increasing weight arc from cells to their
legalised postions

nextpnr - Placement
- Simple demonstration: 2 fixed cells and 2 movable cells i and j

- Create equation for quadratic wirelength to be minimized

- All variables are minimal if all partial derivatives are 0

Graphics taken from:: ANALYTICAL PLACEMENT FOR HETEROGENEOUS FPGAS by Marcel Gort and Jason H.
Anderson

nextpnr - Placement

- Rewrite to system of linear equalities and solve

- Solution: x
i
 = 5/3, x

j
 = 7/3,

- Solve for both X and Y locations

- Outsource to Eigen a industrial strength off the-shelf linear algebra solution

Graphics taken from:: ANALYTICAL PLACEMENT FOR HETEROGENEOUS FPGAS by Marcel Gort and Jason H.
Anderson

nextpnr - Placement

- Prior algorithm in nextpnr is augmented with weight per wire length called
Bound2bound

- Weight: (1 + criticality) / (fanout * |x
i
 - x

j
|)

Criticality:

- value between 0.0 and 1.0 given by timing engine

- 0.0 = don’t care, 1.0 critical path of the circuit

- Result: Very tight, but also very illegal placement

nextpnr - Placement

- Iteratively spread to legal locations

- spread to grid locations

- add arc to spread position

- Repeat with increasing weight until a legal
placement has been found

- Afterwards refinement steps take place
(Simulated Annealing, swapping cells)

1
1

2

3

nextpnr - Router

- Route the wires of the fabric using the PIP

- Minimize wire lengths to optimize circuit performance

- Main router (router1) bespoke implementation by Claire Wolf of Yosys fame

- Unfortunately I do not know in detail how it works.

- Main takeaway: Uses Criticality from timing engine as well to guide routing

nextpnr - Timing engine

- Informs the placer and router how “good” their results are

- Criticality is the central number

- 0.0 = don’t care

- 1.0 critical path of the circuit

- Higher quality place and route results means your circuit can run faster

- After place and route it prints out fmax figures per clock domain

nextpnr - Timing engine

- Generic for every architecture

- Informed by fabric and cell timings

- Ex: ECP5 multiplier timing
(http://yosyshq.net/prjtrellis-db/ECP5/timing/cell_timing_6.html)

- Analyses all combinational paths starting or ending in a FF

http://yosyshq.net/prjtrellis-db/ECP5/timing/cell_timing_6.html

nextpnr - Timing engine Terminology

- Setup time: The time a signals needs to be stable before the clock edge

- Hold time: The time a signal needs to be stable after the clock edge

- Limited/No support for hold time checks in nextpnr at this time

- Required time: The time before which a signal must arrive

- Arrival time: The actual time the signal will arrive

- slack: required - arrival time

nextpnr - Timing engine flow

- Topologically sort netlist

- Walk forward through all ports and assign arrival times:

- Out port: Propagate delay through net and add routing delay to all
users

- In port: Propagate delay through combinational outputs and add
combinational delay

- Initialize the setup/hold as the required time for all FFs

- Walk backwards through all ports:

- Out port: Propagate delay through combinational inputs subtracting
combinational delay

- In port: Propagate delay back through all drivers subtracting routing
delay

nextpnr - Timing engine

- Calculate slack based on required and arrival times
- Calculate criticalities for usage in placer and router
- Optionally report fmax

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

- Topological sort:

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

- Topological sort: FF0 -> FF1 -> C0 ->
C1 -> FF2

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

- Topological sort: FF0 -> FF1 -> C0 ->
C1 -> FF2

- Delays
- FF0 -> C0 -> C1 -> FF2: 12ns
- FF1 -> C0 -> C1 -> FF2: 17ns
- FF1 -> C1 -> FF2: 5ns

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

- Topological sort: FF0 -> FF1 -> C0 ->
C1 -> FF2

- Delays
- FF0 -> C0 -> C1 -> FF2: 12ns
- FF1 -> C0 -> C1 -> FF2: 17ns
- FF1 -> C1 -> FF2: 5ns

- Setup time is 1ns
- FF0 -> C0 -> C1 -> FF2: 13ns
- FF1 -> C0 -> C1 -> FF2: 18ns
- FF1 -> C1 -> FF2: 6ns

nextpnr - Timing engine worked example

- First let’s annotate the routing delays
and combinational delays and also the
setup time

- Topological sort: FF0 -> FF1 -> C0 ->
C1 -> FF2

- Delays
- FF0 -> C0 -> C1 -> FF2: 12ns
- FF1 -> C0 -> C1 -> FF2: 17ns
- FF1 -> C1 -> FF2: 5ns

- Setup time is 1ns
- FF0 -> C0 -> C1 -> FF2: 13ns
- FF1 -> C0 -> C1 -> FF2: 18ns
- FF1 -> C1 -> FF2: 6ns

- Slowest path is 18ns that means
this circuit has an fmax of 55.5
Mhz

nextpnr - Timing constraints

- Topic of my master thesis
- Supported: Clock frequency constraints

- Even automatic derivation of PLL generated clocks if
input is known

- Not supported:
- False path: ignore a path completely
- Min/max delay: Set maximum/minimum allowed delay
- IO delay: Set input/output delay at the edge of the

FPGA
- Multicycle paths: Allow a single path to take multiple

clock cycles
1

nextpnr - Timing constraints

- Timing constraints essential for:
- High performance interface between FPGA and the world
- Clock domain crossings (CDC)
- Partial reconfiguration

- Asynchronous FIFO example
- Domains A and B have an unknown relationship
- Dual port blockRAM, sync write port in domain A, sync read port in

domain B
- Gray code write pointer in domain A, gray code read pointer in domain

B
- FIFO full/empty computation requires both write/read pointer
- Synchronize write pointer to domain B using FFs synchronizer chain
- Synchronize read pointer to domain A using FFs synchronizer chain

nextpnr - Timing constraints

Are we happy?

nextpnr - Timing constraints

nextpnr - Timing constraints

- But we have used gray pointers AND nicely synchronized them?
- Yes! But nextpnr knows nothing about the domains so it cannot decide on a

criticality or an fmax figure for this path
- This means it’s possible for the individual bits of the gray pointers to have

vastly different delays.
- Breaks assumption that max one bit changes each cycle
- Meaning the FF synchronizer chain is no longer a valid word synchronizer

nextpnr - Timing constraints

Max delay constraint to the rescue:

- Constrain path of output of FF in A to input of FF in B with the smaller clock
period of both domains, and vice versa.

- set_max_delay -from [get_cell src_gray_ff*] -to [get_port dst_graysync_ff*]
([expr min ($src_clk_period, $dest_clk_period)])

- from: Where to start the max delay constraint from. These are the
registers named “src_gray_ff*” The * is a wildcard

- To: Where to max_delay constraint ends. These are the first FFs in the
synchronizer chain: “dst_graysync_ff*”

- And finally we say we set the max delay to the minimum of both clock
periods.

nextpnr - Timing constraints

- This is still future work and the topic of my Master Thesis

- Will require re-engineering of the timing analyser

- false_paths/max_delay: We can piggy-back off criticality

- min_delay may require an additional pass after routing.

- io_delay will require teaching nextpnr about delay elements which may
need to be dynamically inserted

- multicycle_path will work with criticality as well

nextpnr

Yosys + nextpnr
demo

nextpnr

Questions?

